Differential games and artificial intelligence — A new approach for solving complex dynamic conflicts

Author(s):  
Joseph Shinar
2018 ◽  
Vol 9 (2) ◽  
pp. 1569-1578 ◽  
Author(s):  
Khaled Z. Abdelgawad ◽  
Mahmoud Elzenary ◽  
Salaheldin Elkatatny ◽  
Mohamed Mahmoud ◽  
Abdulazeez Abdulraheem ◽  
...  

Author(s):  
Rinat Galiautdinov

The chapter describes the new approach in artificial intelligence based on simulated biological neurons and creation of the neural circuits for the sphere of IoT which represent the next generation of artificial intelligence and IoT. Unlike existing technical devices for implementing a neuron based on classical nodes oriented to binary processing, the proposed path is based on simulation of biological neurons, creation of biologically close neural circuits where every device will implement the function of either a sensor or a “muscle” in the frame of the home-based live AI and IoT. The research demonstrates the developed nervous circuit constructor and its usage in building of the AI (neural circuit) for IoT.


2016 ◽  
Vol 18 (02) ◽  
pp. 1640007 ◽  
Author(s):  
Petrosian Ovanes

New approach to the definition of solution in cooperative differential games is considered. The approach is based on artificially truncated information about the game. It assumed that at each time, instant players have information about the structure of the game (payoff functions, motion equations) only for the next fixed time interval. Based on this information they make the decision. Looking Forward Approach is applied to the cases when the players are not sure about the dynamics of the game on the whole time interval [Formula: see text] and orient themselves on the game dynamics defined on the smaller time interval [Formula: see text] ([Formula: see text]), on which they surely know that the game dynamics is not changing.


2012 ◽  
Vol 1 (2) ◽  
pp. 44-59 ◽  
Author(s):  
M. S. Abdel Aziz ◽  
M. A. Moustafa Hassan ◽  
E. A. El-Zahab

This paper presents a new approach for high impedance faults analysis (detection, classification and location) in distribution networks using Adaptive Neuro Fuzzy Inference System. The proposed scheme was trained by data from simulation of a distribution system under various faults conditions and tested for different system conditions. Details of the design process and the results of performance using the proposed method are discussed. The results show the proposed technique effectiveness in detecting, classifying, and locating high impedance faults. The 3rd harmonics, magnitude and angle, for the 3 phase currents give superior results for fault detection as well as for fault location in High Impedance faults. The fundamental components magnitude and angle for the 3 phase currents give superior results for classification phase of High Impedance faults over other types of data inputs.


Author(s):  
Carol J. Russo ◽  
Dennis J. Nicklaus ◽  
Siu S. Tong

A new approach is evaluated for the design of turbomachinery components using existing analysis codes coupled to a generic Artificial Intelligence (AI) software framework called ENGINEOUS. This AI framework uses intelligent search techniques with a small set of basic component design rules to iterate to an optimized solution and to quantify parameter trade-offs. Initial experience with ENGINEOUS indicates that it is a powerful design tool which quickly identifies non-obvious solutions balanced for conflicting multiple goals in a small number of iterations which vary linearly with the number of variables. The solution path and driving logic are easily visible to the designer and a parameter study option can rapidly quantify potential design trade-offs which together allow a critique of the selected design to balance performance against development risks. Because this AI design approach fosters intelligent interface with the designer and is generic, the potential application areas and productivity benefits appear enormous.


Sign in / Sign up

Export Citation Format

Share Document