Stirling and Bernoulli numbers for complex oriented homology theory

Author(s):  
Nigel Ray

Author(s):  
S. Buonchristiano ◽  
C. P. Rourke ◽  
B. J. Sanderson


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4833-4844 ◽  
Author(s):  
Eda Yuluklu ◽  
Yilmaz Simsek ◽  
Takao Komatsu

The aim of this paper is to give some new identities and relations related to the some families of special numbers such as the Bernoulli numbers, the Euler numbers, the Stirling numbers of the first and second kinds, the central factorial numbers and also the numbers y1(n,k,?) and y2(n,k,?) which are given Simsek [31]. Our method is related to the functional equations of the generating functions and the fermionic and bosonic p-adic Volkenborn integral on Zp. Finally, we give remarks and comments on our results.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Jongkyum Kwon ◽  
Hyunseok Lee


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Han Young Kim ◽  
Jongkyum Kwon


2021 ◽  
Vol 9 (1) ◽  
pp. 22-30
Author(s):  
Sibel Koparal ◽  
Neşe Ömür ◽  
Ömer Duran

Abstract In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0, ∑ k = 0 n B k k ! H ( n . k , α ) = α H ( n + 1 , 1 , α ) - H ( n , 1 , α ) , \sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} , and for n > r ≥ 0, ∑ k = r n - 1 ( - 1 ) k s ( k , r ) r ! α k k ! H n - k ( α ) = ( - 1 ) r H ( n , r , α ) , \sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} , where Bernoulli numbers Bn and Stirling numbers of the first kind s (n, r).



2010 ◽  
Vol 17 (2) ◽  
pp. 391-404
Author(s):  
Mikael Vejdemo-Johansson

Abstract Kadeishvili's proof of theminimality theorem [T. Kadeishvili, On the homology theory of fiber spaces, Russ. Math. Surv. 35:3 (1980), 231–238] induces an algorithm for the inductive computation of an A ∞-algebra structure on the homology of a dg-algebra. In this paper, we prove that for one class of dg-algebras, the resulting computation will generate a complete A ∞-algebra structure after a finite amount of computational work.



2021 ◽  
Vol 19 (1) ◽  
pp. 706-723
Author(s):  
Yuri V. Muranov ◽  
Anna Szczepkowska

Abstract In this paper, we introduce the category and the homotopy category of edge-colored digraphs and construct the functorial homology theory on the foundation of the path homology theory provided by Grigoryan, Muranov, and Shing-Tung Yau. We give the construction of the path homology theory for edge-colored graphs that follows immediately from the consideration of natural functor from the category of graphs to the subcategory of symmetrical digraphs. We describe the natural filtration of path homology groups of any digraph equipped with edge coloring, provide the definition of the corresponding spectral sequence, and obtain commutative diagrams and braids of exact sequences.



Author(s):  
Beáta Bényi ◽  
José L. Ramírez

AbstractIn this paper we present several natural q-analogues of the poly-Bernoulli numbers arising in combinatorial contexts. We also recall some related analytical results and ask for combinatorial interpretations.



Sign in / Sign up

Export Citation Format

Share Document