Configuration spaces of identical particles

Author(s):  
F. J. Bloore
Author(s):  
Norman J. Morgenstern Horing

Focusing on systems of many identical particles, Chapter 2 introduces appropriate operators to describe their properties in terms of Schwinger’s “measurement symbols.” The latter are then factorized into “creation” and “annihilation” operators, whose fundamental properties and commutation/anticommutation relations are derived in conjunction with the Pauli exclusion principle. This leads to “second quantization” with the Hamiltonian, number, linear and angular momentum operators expressed in terms of the annihilation and creation operators, as well as the occupation number representation. Finally, the concept of coherent states, as eigenstates of the annihilation operator, having minimum uncertainty, is introduced and discussed in detail.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Song He ◽  
Zhenjie Li ◽  
Prashanth Raman ◽  
Chi Zhang

Abstract Stringy canonical forms are a class of integrals that provide α′-deformations of the canonical form of any polytopes. For generalized associahedra of finite-type cluster algebras, there exist completely rigid stringy integrals, whose configuration spaces are the so-called binary geometries, and for classical types are associated with (generalized) scattering of particles and strings. In this paper, we propose a large class of rigid stringy canonical forms for another class of polytopes, generalized permutohedra, which also include associahedra and cyclohedra as special cases (type An and Bn generalized associahedra). Remarkably, we find that the configuration spaces of such integrals are also binary geometries, which were suspected to exist for generalized associahedra only. For any generalized permutohedron that can be written as Minkowski sum of coordinate simplices, we show that its rigid stringy integral factorizes into products of lower integrals for massless poles at finite α′, and the configuration space is binary although the u equations take a more general form than those “perfect” ones for cluster cases. Moreover, we provide an infinite class of examples obtained by degenerations of type An and Bn integrals, which have perfect u equations as well. Our results provide yet another family of generalizations of the usual string integral and moduli space, whose physical interpretations remain to be explored.


2007 ◽  
Vol 146 (1) ◽  
pp. 5474-5482
Author(s):  
Margareta Boege ◽  
Luis Montejano
Keyword(s):  

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Maxwell T. Hansen ◽  
Fernando Romero-López ◽  
Stephen R. Sharpe

Abstract We derive relations between finite-volume matrix elements and infinite-volume decay amplitudes, for processes with three spinless, degenerate and either identical or non-identical particles in the final state. This generalizes the Lellouch-Lüscher relation for two-particle decays and provides a strategy for extracting three-hadron decay amplitudes using lattice QCD. Unlike for two particles, even in the simplest approximation, one must solve integral equations to obtain the physical decay amplitude, a consequence of the nontrivial finite-state interactions. We first derive the result in a simplified theory with three identical particles, and then present the generalizations needed to study phenomenologically relevant three-pion decays. The specific processes we discuss are the CP-violating K → 3π weak decay, the isospin-breaking η → 3π QCD transition, and the electromagnetic γ* → 3π amplitudes that enter the calculation of the hadronic vacuum polarization contribution to muonic g − 2.


1982 ◽  
Vol 50 (2) ◽  
pp. 148-155 ◽  
Author(s):  
N. I. Greenberg ◽  
S. Raboy
Keyword(s):  

1978 ◽  
Vol 19 (4) ◽  
pp. 878-879 ◽  
Author(s):  
F. J. Bloore ◽  
S. J. Swarbrick
Keyword(s):  

Author(s):  
Caneellieri ◽  
Bordone ◽  
Bertoni ◽  
Ferrari ◽  
Jacoboni

Sign in / Sign up

Export Citation Format

Share Document