The stability of certain vector bundles on ℙ n

Author(s):  
Guntram Bohnhorst ◽  
Heinz Spindler
Keyword(s):  
2011 ◽  
Vol 22 (04) ◽  
pp. 515-534 ◽  
Author(s):  
IUSTIN COANDĂ

We are concerned with the problem of the stability of the syzygy bundles associated to base-point-free vector spaces of forms of the same degree d on the projective space of dimension n. We deduce directly, from M. Green's vanishing theorem for Koszul cohomology, that any such bundle is stable if its rank is sufficiently high. With a similar argument, we prove the semistability of a certain syzygy bundle on a general complete intersection of hypersurfaces of degree d in the projective space. This answers a question of H. Flenner [Comment. Math. Helv.59 (1984) 635–650]. We then give an elementary proof of H. Brenner's criterion of stability for monomial syzygy bundles, avoiding the use of Klyachko's results on toric vector bundles. We finally prove the existence of stable syzygy bundles defined by monomials of the same degree d, of any possible rank, for n at least 3. This extends the similar result proved, for n = 2, by L. Costa, P. Macias Marques and R. M. Miro-Roig [J. Pure Appl. Algebra214 (2010) 1241–1262]. The extension to the case n at least 3 has been also, independently, obtained by P. Macias Marques in his thesis [arXiv:0909.4646/math.AG (2009)].


1993 ◽  
Vol 114 (3) ◽  
pp. 443-451
Author(s):  
Al Vitter

Stable holomorphic vector bundles over complex projective space ℙnhave been studied from both the differential-geometric and the algebraic-geometric points of view.On the differential-geometric side, the stability ofE-→ ℙncan be characterized by the existence of a unique hermitian–Einstein metric onE, i.e. a metric whose curvature matrix has trace-free part orthogonal to the Fubini–Study Kähler form of ℙn(see [6], [7], and [13]). Very little is known about this metric in general and the only explicit examples are the metrics on the tangent bundle of ℙnand the nullcorrelation bundle (see [9] and [10]).


2016 ◽  
Vol 09 (01) ◽  
pp. 1650001
Author(s):  
Rohollah Bakhshandeh-Chamazkoti ◽  
Mehdi Nadjafikhah

In this attempt, the stability of a connection on Hermitian vector bundles over a Riemannian manifold for the generalized Jensen-type functional equation [Formula: see text] is discussed. In fact, the main purpose of this paper is to prove the generalized Hyers–Ulam–Rassias stability of connection on between Hermitian [Formula: see text] and [Formula: see text]. Also we will use the fixed point method to prove the stability of this connection for the above generalized Jensen-type functional equation.


2018 ◽  
Vol 356 (10) ◽  
pp. 1030-1035 ◽  
Author(s):  
Indranil Biswas ◽  
Sorin Dumitrescu ◽  
Manfred Lehn

2003 ◽  
Vol 14 (03) ◽  
pp. 259-287 ◽  
Author(s):  
DANIEL GUAN

In this paper we prove that on certain manifolds Nn with nonnegative first Chern class the existence of extremal metric in a Kähler class is the same as the stability of the Kähler class. We also obtain many new Kähler classes with extremal metrics, in particular, the Kähler-Einstein metrics for Nn with n > 2. We also compare the problem of finding Calabi extremal metrics with the similar problem of finding Hermitian–Einstein metrics on the holomorphic vector bundles. We explain the geodesic stability and found that the stability for the manifold is much more complicated


1982 ◽  
Vol 99 ◽  
pp. 605-613
Author(s):  
P. S. Conti

Conti: One of the main conclusions of the Wolf-Rayet symposium in Buenos Aires was that Wolf-Rayet stars are evolutionary products of massive objects. Some questions:–Do hot helium-rich stars, that are not Wolf-Rayet stars, exist?–What about the stability of helium rich stars of large mass? We know a helium rich star of ∼40 MO. Has the stability something to do with the wind?–Ring nebulae and bubbles : this seems to be a much more common phenomenon than we thought of some years age.–What is the origin of the subtypes? This is important to find a possible matching of scenarios to subtypes.


1999 ◽  
Vol 173 ◽  
pp. 309-314 ◽  
Author(s):  
T. Fukushima

AbstractBy using the stability condition and general formulas developed by Fukushima (1998 = Paper I) we discovered that, just as in the case of the explicit symmetric multistep methods (Quinlan and Tremaine, 1990), when integrating orbital motions of celestial bodies, the implicit symmetric multistep methods used in the predictor-corrector manner lead to integration errors in position which grow linearly with the integration time if the stepsizes adopted are sufficiently small and if the number of corrections is sufficiently large, say two or three. We confirmed also that the symmetric methods (explicit or implicit) would produce the stepsize-dependent instabilities/resonances, which was discovered by A. Toomre in 1991 and confirmed by G.D. Quinlan for some high order explicit methods. Although the implicit methods require twice or more computational time for the same stepsize than the explicit symmetric ones do, they seem to be preferable since they reduce these undesirable features significantly.


Author(s):  
Godfrey C. Hoskins ◽  
V. Williams ◽  
V. Allison

The method demonstrated is an adaptation of a proven procedure for accurately determining the magnification of light photomicrographs. Because of the stability of modern electrical lenses, the method is shown to be directly applicable for providing precise reproducibility of magnification in various models of electron microscopes.A readily recognizable area of a carbon replica of a crossed-line diffraction grating is used as a standard. The same area of the standard was photographed in Phillips EM 200, Hitachi HU-11B2, and RCA EMU 3F electron microscopes at taps representative of the range of magnification of each. Negatives from one microscope were selected as guides and printed at convenient magnifications; then negatives from each of the other microscopes were projected to register with these prints. By deferring measurement to the print rather than comparing negatives, correspondence of magnification of the specimen in the three microscopes could be brought to within 2%.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Sign in / Sign up

Export Citation Format

Share Document