scholarly journals Comments about higgs fields, noncommutative geometry, and the standard model

Author(s):  
G. Cammarata ◽  
R. Coquereaux

1999 ◽  
Vol 14 (04) ◽  
pp. 559-588 ◽  
Author(s):  
RAIMAR WULKENHAAR

We investigate the SO(10) unification model in a Lie-algebraic formulation of noncommutative geometry. The SO(10) symmetry is broken by a 45-Higgs and the Majorana mass term for the right neutrinos (126-Higgs) to the standard model structure group. We study the case where the fermion masses are as general as possible, which leads to two 10-multiplets, four 120-multiplets and two additional 126-multiplets of Higgs fields. This Higgs structure differs considerably from the two Higgs multiplets 16 ⊗ 16* and 16c ⊗ 16* used by Chamseddine and Fröhlich. We find the usual tree level predictions of noncommutative geometry: [Formula: see text], [Formula: see text] and g2=g3 as well as mH≤ mt.



2016 ◽  
Vol 31 (18) ◽  
pp. 1630027
Author(s):  
Ikuo S. Sogami

With multi-spinor fields which behave as triple-tensor products of the Dirac spinors, the Standard Model is extended so as to embrace three families of ordinary quarks and leptons in the visible sector and an additional family of exotic quarks and leptons in the dark sector of our Universe. Apart from the gauge and Higgs fields of the Standard Model symmetry G, new gauge and Higgs fields of a symmetry isomorphic to G are postulated to exist in the dark sector. It is the bi-quadratic interaction between visible and dark Higgs fields that opens a main portal to the dark sector. Breakdowns of the visible and dark electroweak symmetries result in the Higgs boson with mass 125 GeV and a new boson which can be related to the diphoton excess around 750 GeV. Subsequent to a common inflationary phase and a reheating period, the visible and dark sectors follow weakly-interacting paths of thermal histories. We propose scenarios for dark matter in which no dark nuclear reaction takes place. A candidate for the main component of the dark matter is a stable dark hadron with spin 3/2, and the upper limit of its mass is estimated to be 15.1 GeV/c2.



2005 ◽  
Vol 20 (17n18) ◽  
pp. 1315-1326 ◽  
Author(s):  
PIERRE MARTINETTI

We give a brief account of the description of the standard model in noncommutative geometry as well as the thermal time hypothesis, questioning their relevance for quantum gravity.



2013 ◽  
Vol 28 (05) ◽  
pp. 1350010 ◽  
Author(s):  
F. R. KLINKHAMER

It is pointed out (not for the first time) that the minimal Standard Model, without additional gauge-singlet right-handed neutrinos or isotriplet Higgs fields, allows for nonvanishing neutrino masses and mixing. The required interaction term is non-renormalizable and violates B-L conservation. The ultimate explanation of this interaction term may or may not rely on grand unification.



2013 ◽  
Vol 2013 (3) ◽  
Author(s):  
Thijs van den Broek ◽  
Walter D. van Suijlekom


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
A. Bochniak ◽  
A. Sitarz ◽  
P. Zalecki

Abstract We compute the leading terms of the spectral action for a noncommutative geometry model that has no fermion doubling. The spectral triple describing it, which is chiral and allows for CP-symmetry breaking, has the Dirac operator that is not of the product type. Using Wick rotation we derive explicitly the Lagrangian of the model from the spectral action for a flat metric, demonstrating the appearance of the topological θ-terms for the electroweak gauge fields.



2019 ◽  
Vol 109 (11) ◽  
pp. 2585-2585
Author(s):  
Ludwik Dąbrowski ◽  
Francesco D’Andrea ◽  
Andrzej Sitarz


2006 ◽  
Vol 47 (5) ◽  
pp. 052305 ◽  
Author(s):  
John W. Barrett ◽  
Rachel A. Dawe Martins


Sign in / Sign up

Export Citation Format

Share Document