Variational improvement of perturbation theory and/or perturbative improvement of variational calculations

Author(s):  
A. Neveu
2020 ◽  
Vol 35 (01) ◽  
pp. 2050005
Author(s):  
J. C. del Valle ◽  
A. V. Turbiner

In our previous paper I (del Valle–Turbiner, 2019) a formalism was developed to study the general [Formula: see text]-dimensional radial anharmonic oscillator with potential [Formula: see text]. It was based on the Perturbation Theory (PT) in powers of [Formula: see text] (weak coupling regime) and in inverse, fractional powers of [Formula: see text] (strong coupling regime) in both [Formula: see text]-space and in [Formula: see text]-space, respectively. As a result, the Approximant was introduced — a locally-accurate uniform compact approximation of a wave function. If taken as a trial function in variational calculations, it has led to variational energies of unprecedented accuracy for cubic anharmonic oscillator. In this paper, the formalism is applied to both quartic and sextic, spherically-symmetric radial anharmonic oscillators with two term potentials [Formula: see text], [Formula: see text], respectively. It is shown that a two-parametric Approximant for quartic oscillator and a five-parametric one for sextic oscillator for the first four eigenstates used to calculate the variational energy are accurate in 8–12 figures for any [Formula: see text] and [Formula: see text], while the relative deviation of the Approximant from the exact eigenfunction is less than [Formula: see text] for any [Formula: see text].


1998 ◽  
Vol 543 ◽  
Author(s):  
Katja Lindenberg ◽  
A. H. Romero ◽  
D. W. Brown

AbstractWe apply weak-coupling perturbation theory and strong-coupling perturbation theory to the Holstein molecular crystal model in order to elucidate the effects of anisotropy on polaron properties in D dimensions. The ground state energy is considered as a primary criterion through which to study the effects of anisotropy on the self-trapping transition, with particular attention given to shifting of the self-trapping line and the adiabatic critical point. The effects of dimensionality and anisotropy on electron-phonon correlations and polaronic mass enhancement are studied, with particular attention given to the polaron radius and the characteristics of quasi-l-D and quasi-2-D structures. Perturbative results are confirmed by selected comparisons with variational calculations and quantum Monte Carlo data.


1973 ◽  
Vol 51 (2) ◽  
pp. 260-264 ◽  
Author(s):  
D. P. Chong ◽  
F. Weinhold

Weinhold's lower bound formulas are used on rather accurate wavefunctions for the 11S ground states of H−, He, and Li+, and the 21S and 23S excited states of He. The results are found to be of very high quality, as judged by comparison with the best available variational calculations, and can be used to rule out many of the values calculated by Scherr and Knight from high-order perturbation theory.


1988 ◽  
Vol 102 ◽  
pp. 343-347
Author(s):  
M. Klapisch

AbstractA formal expansion of the CRM in powers of a small parameter is presented. The terms of the expansion are products of matrices. Inverses are interpreted as effects of cascades.It will be shown that this allows for the separation of the different contributions to the populations, thus providing a natural classification scheme for processes involving atoms in plasmas. Sum rules can be formulated, allowing the population of the levels, in some simple cases, to be related in a transparent way to the quantum numbers.


2020 ◽  
pp. 27-33
Author(s):  
Boris A. Veklenko

Without using the perturbation theory, the article demonstrates a possibility of superluminal information-carrying signals in standard quantum electrodynamics using the example of scattering of quantum electromagnetic field by an excited atom.


Sign in / Sign up

Export Citation Format

Share Document