scholarly journals Boundary stress-energy tensor and Newton-Cartan geometry in Lifshitz holography

2014 ◽  
Vol 2014 (1) ◽  
Author(s):  
Morten H. Christensen ◽  
Jelle Hartong ◽  
Niels A. Obers ◽  
Blaise Rollier
2011 ◽  
Vol 20 (04) ◽  
pp. 581-591 ◽  
Author(s):  
ZHENXING LIU ◽  
ZEQIAN CHEN

We investigate the properties of rotating asymptotically flat black ring solutions in five-dimensional Einstein–Maxwell-dilaton gravity with the Kaluza–Klein coupling. Within the quasilocal formalism, the balance condition for these solutions is derived by using the conservation of the renormalized boundary stress–energy tensor, which is a new method proposed by Astefanesei and his collaborators. We also study the thermodynamics of unbalanced black rings. The conserved charges and the thermodynamical quantities are computed. Due to the existence of a conical singularity in the boundary, these quantities differ from the original regular ones. It is shown that the Smarr relation and the quantum statistical relation are still satisfied. However, we get an extra term in the first law of thermodynamics. As the balance condition is imposed this extra term vanishes.


2011 ◽  
Vol 26 (13) ◽  
pp. 2271-2277
Author(s):  
ZHENXING LIU ◽  
ZEQIAN CHEN

In this work, we study the nonequilibrium dynamics of ϕ-spinning black rings within the quasilocal formalism. We adopt the counterterm method and compute the renormalized boundary stress–energy tensor. By considering the conservation of this tensor, the condition for removing the conical singularity at spatial infinity is derived. It is subsequently shown that a ϕ-spinning black ring cannot be kept in a state of equilibrium, which is consistent with the physical interpretation that the angular momentum is on the plane orthogonal to the ring and there is no force to balance the tension and gravitational self-attraction. The results of these computations lay a foundation for studying the thermodynamics of ϕ-spinning rings in detail. Finally, we charge up the rings in Einstein–Maxwell-dilaton system and suggest feasible ways to make them balanced.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Hanno Bertle ◽  
Andrea Dei ◽  
Matthias R. Gaberdiel

Abstract The large N limit of symmetric orbifold theories was recently argued to have an AdS/CFT dual world-sheet description in terms of an sl(2, ℝ) WZW model. In previous work the world-sheet state corresponding to the symmetric orbifold stress-energy tensor was identified. We calculate certain 2- and 3-point functions of the corresponding vertex operator on the world-sheet, and demonstrate that these amplitudes reproduce exactly what one expects from the dual symmetric orbifold perspective.


1996 ◽  
Vol 11 (27) ◽  
pp. 2171-2177
Author(s):  
A.N. ALIEV

The electromagnetic perturbations propagating in the multiconical spacetime of N parallel cosmic strings are described. The expression for vacuum average of the stress-energy tensor is reduced to a form involving only zero-spin-weighted perturbation modes.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Ming-Zhi Chung ◽  
Yu-tin Huang ◽  
Jung-Wook Kim

Abstract In this paper, we demonstrate that at leading order in post Minkowskian (PM) expansion, the stress-energy tensor of Kerr-Newman black hole can be recovered to all orders in spin from three sets of minimal coupling: the electric and gravitational minimal coupling for higher-spin particles, and the “minimal coupling” for massive spin-2 decay. These couplings are uniquely defined from kinematic consideration alone. This is shown by extracting the classical piece of the one-loop stress-energy tensor form factor, which we provide a basis that is valid to all orders in spin. The 1 PM stress tensor, and the metric in the harmonic gauge, is then recovered from the classical spin limit of the form factor.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


2015 ◽  
Vol 58 (1) ◽  
pp. 89-108 ◽  
Author(s):  
Victor E. Ambrus ◽  
Robert Blaga

Abstract We consider an application of the tetrad formalism introduced by Cardall et al. [Phys. Rev. D 88 (2013) 023011] to the problem of a rigidly rotating relativistic gas in thermal equilibrium and discuss the possible applications of this formalism to rel- ativistic lattice Boltzmann simulations. We present in detail the transformation to the comoving frame, the choice of tetrad, as well as the explicit calculation and analysis of the components of the equilibrium particle ow four-vector and of the equilibrium stress-energy tensor.


Sign in / Sign up

Export Citation Format

Share Document