scholarly journals Entropy production far from equilibrium in a chiral charged plasma in the presence of external electromagnetic fields

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Casey Cartwright

Abstract We report on the time evolution of a charged strongly coupled N = 4 SYM plasma with an axial anomaly subjected to strong electromagnetic fields. The evolution of this plasma corresponds to a fully backreacted asymptotically AdS5 solution to the Einstein-Maxwell-Chern-Simons theory. We explore the evolution of the axial current and production of axial charges. As an application we show that after a sufficiently long time both the entropy and the holographic entanglement entropy of a strip-like topology (both parallel to and transverse to the flow of axial current) grow linearly in time.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Leonardo Santilli ◽  
Richard J. Szabo ◽  
Miguel Tierz

Abstract We derive the $$ T\overline{T} $$ T T ¯ -perturbed version of two-dimensional q-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the $$ T\overline{T} $$ T T ¯ -deformation results in a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large N factorization into chiral and anti-chiral sectors. For the U(N) gauge theory on the sphere, we show that the large N phase transition persists, and that it is of third order and induced by instantons. The effect of the $$ T\overline{T} $$ T T ¯ -deformation is to decrease the critical value of the ’t Hooft coupling, and also to extend the class of line bundles for which the phase transition occurs. The same results are shown to hold for (q, t)-deformed Yang-Mills theory. We also explicitly evaluate the entanglement entropy in the large N limit of Yang-Mills theory, showing that the $$ T\overline{T} $$ T T ¯ -deformation decreases the contribution of the Boltzmann entropy.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Siddharth Dwivedi ◽  
Vivek Kumar Singh ◽  
Abhishek Roy

Abstract We study the multi-boundary entanglement structure of the state associated with the torus link complement S3\Tp,q in the set-up of three-dimensional SU(2)k Chern-Simons theory. The focal point of this work is the asymptotic behavior of the Rényi entropies, including the entanglement entropy, in the semiclassical limit of k → ∞. We present a detailed analysis of several torus links and observe that the entropies converge to a finite value in the semiclassical limit. We further propose that the large k limiting value of the Rényi entropy of torus links of type Tp,pn is the sum of two parts: (i) the universal part which is independent of n, and (ii) the non-universal or the linking part which explicitly depends on the linking number n. Using the analytic techniques, we show that the universal part comprises of Riemann zeta functions and can be written in terms of the partition functions of two-dimensional topological Yang-Mills theory. More precisely, it is equal to the Rényi entropy of certain states prepared in topological 2d Yang-Mills theory with SU(2) gauge group. Further, the universal parts appearing in the large k limits of the entanglement entropy and the minimum Rényi entropy for torus links Tp,pn can be interpreted in terms of the volume of the moduli space of flat connections on certain Riemann surfaces. We also analyze the Rényi entropies of Tp,pn link in the double scaling limit of k → ∞ and n → ∞ and propose that the entropies converge in the double limit as well.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Dionysios Anninos ◽  
Eleanor Harris

Abstract We explore thermodynamic contributions to the three-dimensional de Sitter horizon originating from metric and Chern-Simons gauge field fluctuations. In Euclidean signature these are computed by the partition function of gravity coupled to matter semi-classically expanded about the round three-sphere saddle. We investigate a corresponding Lorentzian picture — drawing inspiration from the topological entanglement entropy literature — in the form of an edge-mode theory residing at the de Sitter horizon. We extend the discussion to three-dimensional gravity with positive cosmological constant, viewed (semi-classically) as a complexified Chern-Simons theory. The putative gravitational edge-mode theory is a complexified version of the chiral Wess-Zumino-Witten model associated to the edge-modes of ordinary Chern-Simons theory. We introduce and solve a family of complexified Abelian Chern-Simons theories as a way to elucidate some of the more salient features of the gravitational edge-mode theories. We comment on the relation to the AdS4/CFT3 correspondence.


1999 ◽  
Vol 09 (PR10) ◽  
pp. Pr10-223-Pr10-225
Author(s):  
S. Scheidl ◽  
B. Rosenow

1995 ◽  
Vol 73 (5-6) ◽  
pp. 344-348 ◽  
Author(s):  
Yeong-Chuan Kao ◽  
Hsiang-Nan Li

We show that the two-loop contribution to the coefficient of the Chern–Simons term in the effective action of the Yang–Mills–Chern–Simons theory is infrared finite in the background field Landau gauge. We also discuss the difficulties in verifying the conjecture, due to topological considerations, that there are no more quantum corrections to the Chern–Simons term other than the well-known one-loop shift of the coefficient.


1993 ◽  
Vol 48 (4) ◽  
pp. 1808-1820 ◽  
Author(s):  
Mark Burgess ◽  
David J. Toms ◽  
Nils Tveten

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Viraj Meruliya ◽  
Sunil Mukhi ◽  
Palash Singh

Abstract We investigate the Poincaré series approach to computing 3d gravity partition functions dual to Rational CFT. For a single genus-1 boundary, we show that for certain infinite sets of levels, the SU(2)k WZW models provide unitary examples for which the Poincaré series is a positive linear combination of two modular-invariant partition functions. This supports the interpretation that the bulk gravity theory (a topological Chern-Simons theory in this case) is dual to an average of distinct CFT’s sharing the same Kac-Moody algebra. We compute the weights of this average for all seed primaries and all relevant values of k. We then study other WZW models, notably SU(N)1 and SU(3)k, and find that each class presents rather different features. Finally we consider multiple genus-1 boundaries, where we find a class of seed functions for the Poincaré sum that reproduces both disconnected and connected contributions — the latter corresponding to analogues of 3-manifold “wormholes” — such that the expected average is correctly reproduced.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tongshuai Zhu ◽  
Huaiqiang Wang ◽  
Haijun Zhang ◽  
Dingyu Xing

AbstractAxion was postulated as an elementary particle to solve the strong charge conjugation and parity puzzle, and later axion was also considered to be a possible component of dark matter in the universe. However, the existence of axions in nature has not been confirmed. Interestingly, axions arise out of pseudoscalar fields derived from the Chern–Simons theory in condensed matter physics. In antiferromagnetic insulators, the axion field can become dynamical due to spin-wave excitations and exhibits rich exotic phenomena, such as axion polariton. However, antiferromagnetic dynamical axion insulator has yet been experimentally identified in realistic materials. Very recently, MnBi2Te4 was discovered to be an antiferromagnetic topological insulator with a quantized static axion field protected by inversion symmetry $${\mathcal{P}}$$ P and magnetic-crystalline symmetry $${\mathcal{S}}$$ S . Here, we studied MnBi2Te4 films in which both the $${\mathcal{P}}$$ P and $${\mathcal{S}}$$ S symmetries are spontaneously broken and found that substantially enhanced dynamical magnetoelectric effects could be realized through tuning the thickness of MnBi2Te4 films, temperature, or element substitutions. Our results show that thin films of MnBi2Te4 and related compounds could provide a promising material platform to experimentally study axion electrodynamics.


Sign in / Sign up

Export Citation Format

Share Document