scholarly journals On the S-matrix of Liouville theory

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
George Jorjadze ◽  
Stefan Theisen

Abstract The S-matrix for each chiral sector of Liouville theory on a cylinder is computed from the loop expansion of correlation functions of a one-dimensional field theory on a circle with a non-local kinetic energy and an exponential potential. This action is the Legendre transform of the generating function of semiclassical scattering amplitudes. It is derived from the relation between asymptotic in- and out-fields. Its relevance for the quantum scattering process is demonstrated by comparing explicit loop diagrams computed from this action with other methods of computing the S-matrix, which are also developed.

Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Panos Betzios ◽  
Nava Gaddam ◽  
Olga Papadoulaki

Abstract We describe a unitary scattering process, as observed from spatial infinity, of massless scalar particles on an asymptotically flat Schwarzschild black hole background. In order to do so, we split the problem in two different regimes governing the dynamics of the scattering process. The first describes the evolution of the modes in the region away from the horizon and can be analysed in terms of the effective Regge-Wheeler potential. In the near horizon region, where the Regge-Wheeler potential becomes insignificant, the WKB geometric optics approximation of Hawking’s is replaced by the near-horizon gravitational scattering matrix that captures non-perturbative soft graviton exchanges near the horizon. We perform an appropriate matching for the scattering solutions of these two dynamical problems and compute the resulting Bogoliubov relations, that combines both dynamics. This allows us to formulate an S-matrix for the scattering process that is manifestly unitary. We discuss the analogue of the (quasi)-normal modes in this setup and the emergence of gravitational echoes that follow an original burst of radiation as the excited black hole relaxes to equilibrium.


2005 ◽  
Vol 72 (4) ◽  
Author(s):  
J. I. Kim ◽  
J. Schmiedmayer ◽  
P. Schmelcher

2011 ◽  
Vol 89 (11) ◽  
pp. 1127-1140 ◽  
Author(s):  
B. Belchev ◽  
S.G. Neale ◽  
M.A. Walton

The poles of the quantum scattering matrix (S-matrix) in the complex momentum plane have been studied extensively. Bound states give rise to S-matrix poles, and other poles correspond to non-normalizable antibound, resonance, and antiresonance states. They describe important physics but their locations can be difficult to determine. In pioneering work, Nussenzveig (Nucl. Phys. 11, 499 (1959)) performed the analysis for a square well (wall), and plotted the flow of the poles as the potential depth (height) varied. More than fifty years later, however, little has been done in the way of direct generalization of those results. We point out that today we can find such poles easily and efficiently using numerical techniques and widely available software. We study the poles of the scattering matrix for the simplest piecewise flat potentials, with one and two adjacent (nonzero) pieces. For the finite well (wall) the flow of the poles as a function of the depth (height) recovers the results of Nussenzveig. We then analyze the flow for a potential with two independent parts that can be attractive or repulsive, the two-piece potential. These examples provide some insight into the complicated behavior of the resonance, antiresonance, and antibound poles.


Sign in / Sign up

Export Citation Format

Share Document