scholarly journals Recursive construction of the operator product expansion in curved space

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Markus B. Fröb

Abstract I derive a formula for the coupling-constant derivative of the coefficients of the operator product expansion (Wilson OPE coefficients) in an arbitrary curved space, as the natural extension of the quantum action principle. Expanding the coefficients themselves in powers of the coupling constants, this formula allows to compute them recursively to arbitrary order. As input, only the OPE coefficients in the free theory are needed, which are easily obtained using Wick’s theorem. I illustrate the method by computing the OPE of two scalars ϕ in hyperbolic space (Euclidean Anti-de Sitter space) up to terms vanishing faster than the square of their separation to first order in the quartic interaction gϕ4, as well as the OPE coefficient "Image missing" at second order in g.

2008 ◽  
Vol 17 (13n14) ◽  
pp. 2607-2615 ◽  
Author(s):  
STEFAN HOLLANDS ◽  
ROBERT M. WALD

To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved space–time, the theory must be formulated in a local and covariant manner in terms of locally measureable field observables. Since a generic curved space–time does not possess symmetries or a unique notion of a vacuum state, the theory also must be formulated in a manner that does not require symmetries or a preferred notion of a "vacuum state" and "particles". We propose such a formulation of quantum field theory, wherein the operator product expansion (OPE) of the quantum fields is elevated to a fundamental status, and the quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients may be better behaved than any quantities having to do with states, we suggest that it may be possible to perturbatively construct the OPE coefficients — and, thus, the quantum field theory. By contrast, ground/vacuum states — in space–times, such as Minkowski space–time, where they may be defined — cannot vary analytically with the parameters of the theory. We argue that this implies that composite fields may acquire nonvanishing vacuum state expectation values due to nonperturbative effects. We speculate that this could account for the existence of a nonvanishing vacuum expectation value of the stress-energy tensor of a quantum field occurring at a scale much smaller than the natural scales of the theory.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Giovanni Antonio Chirilli

Abstract The high energy Operator Product Expansion for the product of two electromagnetic currents is extended to the sub-eikonal level in a rigorous way. I calculate the impact factors for polarized and unpolarized structure functions, define new distribution functions, and derive the evolution equations for unpolarized and polarized structure functions in the flavor singlet and non-singlet case.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Simon Caron-Huot ◽  
Joshua Sandor

Abstract The Operator Product Expansion is a useful tool to represent correlation functions. In this note we extend Conformal Regge theory to provide an exact OPE representation of Lorenzian four-point correlators in conformal field theory, valid even away from Regge limit. The representation extends convergence of the OPE by rewriting it as a double integral over continuous spins and dimensions, and features a novel “Regge block”. We test the formula in the conformal fishnet theory, where exact results involving nontrivial Regge trajectories are available.


1982 ◽  
Vol 119 (4-6) ◽  
pp. 407-411 ◽  
Author(s):  
K.G. Chetyrkin ◽  
S.G. Gorishny ◽  
F.V. Tkachov

1999 ◽  
Vol 14 (30) ◽  
pp. 4819-4840
Author(s):  
JAN FISCHER ◽  
IVO VRKOČ

We discuss the current use of the operator-product expansion in QCD calculations. Treating the OPE as an expansion in inverse powers of an energy-squared variable (with possible exponential terms added), approximating the vacuum expectation value of the operator product by several terms and assuming a bound on the remainder along the Euclidean region, we observe how the bound varies with increasing deflection from the Euclidean ray down to the cut (Minkowski region). We argue that the assumption that the remainder is constant for all angles in the cut complex plane down to the Minkowski region is not justified. Making specific assumptions on the properties of the expanded function, we obtain bounds on the remainder in explicit form and show that they are very sensitive both to the deflection angle and to the class of functions considered. The results obtained are discussed in connection with calculations of the coupling constant αs from the τ decay.


Sign in / Sign up

Export Citation Format

Share Document