quartic interaction
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Oleg Antipin ◽  
Jahmall Bersini ◽  
Francesco Sannino ◽  
Zhi-Wei Wang ◽  
Chen Zhang
Keyword(s):  


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
David Curtin ◽  
Shayne Gryba

Abstract Many minimal models of dark matter (DM) or canonical solutions to the hierarchy problem are either excluded or severely constrained by LHC and direct detection null results. In particular, Higgs Portal Dark Matter (HPDM) features a scalar coupling to the Higgs via a quartic interaction, and obtaining the measured relic density via thermal freeze-out gives definite direct detection predictions which are now almost entirely excluded. The Twin Higgs solves the little hierarchy problem without coloured top partners by introducing a twin sector related to the Standard Model (SM) by a discrete symmetry. We generalize HPDM to arbitrary Twin Higgs models and introduce Twin Higgs Portal Dark Matter (THPDM), which features a DM candidate with an SU(4)-invariant quartic coupling to the Twin Higgs scalar sector. Given the size of quadratic corrections to the DM mass, its most motivated scale is near the mass of the radial mode. In that case, DM annihilation proceeds with the full Twin Higgs portal coupling, while direct detection is suppressed by the pNGB nature of the 125 GeV Higgs. For a standard cosmological history, this results in a predicted direct detection signal for THPDM that is orders of magnitude below that of HPDM with very little dependence on the precise details of the twin sector, evading current bounds but predicting possible signals at next generation experiments. In many Twin Higgs models, twin radiation contributions to ∆Neff are suppressed by an asymmetric reheating mechanism. We study this by extending the νMTH and X MTH models to include THPDM and compute the viable parameter space according to the latest CMB bounds. The injected entropy dilutes the DM abundance as well, resulting in additional suppression of direct detection below the neutrino floor.





2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Ram Brustein ◽  
Yoav Zigdon

Abstract We discuss interacting, closed, bosonic and superstrings in thermal equilibrium at temperatures close to the Hagedorn temperature in flat space. We calculate S-matrix elements of the strings at the Hagedorn temperature and use them to construct a low-energy effective action for interacting strings near the Hagedorn temperature. We show, in particular, that the four-point amplitude of massless winding modes leads to a positive quartic interaction. Furthermore, the effective field theory has a generalized conformal structure, namely, it is conformally invariant when the temperature is assigned an appropriate scaling dimension. Then, we show that the equations of motion resulting from the effective action possess a winding-mode-condensate background solution above the Hagedorn temperature and present a worldsheet conformal field theory, similar to a Sine-Gordon theory, that corresponds to this solution. We find that the Hagedorn phase transition in our setup is second order, in contrast to a first-order transition that was found previously in different setups.



2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Giulio Salvatori ◽  
Stefan Stanojevic

Abstract We provide an efficient recursive formula to compute the canonical forms of arbitrary d-dimensional simple polytopes, which are convex polytopes such that every vertex lies precisely on d facets. For illustration purposes, we explicitly derive recursive formulae for the canonical forms of Stokes polytopes, which play a similar role for a theory with quartic interaction as the Associahedron does in planar bi-adjoint ϕ3 theory. As a by-product, our formula also suggests a new way to obtain the full planar amplitude in ϕ4 theory by taking suitable limits of the canonical forms of constituent Stokes polytopes.



2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Markus B. Fröb

Abstract I derive a formula for the coupling-constant derivative of the coefficients of the operator product expansion (Wilson OPE coefficients) in an arbitrary curved space, as the natural extension of the quantum action principle. Expanding the coefficients themselves in powers of the coupling constants, this formula allows to compute them recursively to arbitrary order. As input, only the OPE coefficients in the free theory are needed, which are easily obtained using Wick’s theorem. I illustrate the method by computing the OPE of two scalars ϕ in hyperbolic space (Euclidean Anti-de Sitter space) up to terms vanishing faster than the square of their separation to first order in the quartic interaction gϕ4, as well as the OPE coefficient "Image missing" at second order in g.



2020 ◽  
Vol 29 (14) ◽  
pp. 2043020
Author(s):  
Amitabha Lahiri

The dynamics of fermions in curved spacetime is governed by a spin connection, a part of which is contorsion, an auxiliary field independent of the metric, without dynamics but fully expressible in terms of the axial current density of fermions. Its effect is the appearance of a quartic interaction involving all fermions. Contorsion can couple to left- and right-handed fermions with different strengths, leading to an effective mass for fermions propagating on a background containing fermionic matter.



Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 67 ◽  
Author(s):  
Cédric Bény

Information-theoretical quantities such as statistical distinguishability typically result from optimisations over all conceivable observables. Physical theories, however, are not generally considered valid for all mathematically allowed measurements. For instance, quantum field theories are not meant to be correct or even consistent at arbitrarily small lengthscales. A general way of limiting such an optimisation to certain observables is to first coarse-grain the states by a quantum channel. We show how to calculate contractive quantum information metrics on coarse-grained equilibrium states of free bosonic systems (Gaussian states), in directions generated by arbitrary perturbations of the Hamiltonian. As an example, we study the Klein-Gordon field. If the phase-space resolution is coarse compared to h-bar, the various metrics become equal and the calculations simplify. In that context, we compute the scale dependence of the distinguishability of the quartic interaction.



Sign in / Sign up

Export Citation Format

Share Document