scholarly journals Holographic entanglement entropy for perturbative higher-curvature gravities

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Pablo Bueno ◽  
Joan Camps ◽  
Alejandro Vilar López

Abstract The holographic entanglement entropy functional for higher-curvature gravities involves a weighted sum whose evaluation, beyond quadratic order, requires a complicated theory-dependent splitting of the Riemann tensor components. Using the splittings of general relativity one can obtain unambiguous formulas perturbatively valid for general higher-curvature gravities. Within this setup, we perform a novel rewriting of the functional which gets rid of the weighted sum. The formula is particularly neat for general cubic and quartic theories, and we use it to explicitly evaluate the corresponding functionals. In the case of Lovelock theories, we find that the anomaly term can be written in terms of the exponential of a differential operator. We also show that order-n densities involving nR Riemann tensors (combined with n−nR Ricci’s) give rise to terms with up to 2nR− 2 extrinsic curvatures. In particular, densities built from arbitrary Ricci curvatures combined with zero or one Riemann tensors have no anomaly term in their functionals. Finally, we apply our results for cubic gravities to the evaluation of universal terms coming from various symmetric regions in general dimensions. In particular, we show that the universal function characteristic of corner regions in d = 3 gets modified in its functional dependence on the opening angle with respect to the Einstein gravity result.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Elena Cáceres ◽  
Rodrigo Castillo Vásquez ◽  
Alejandro Vilar López

Abstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Tadashi Takayanagi ◽  
Takahiro Uetoko

Abstract In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Giorgos Anastasiou ◽  
Ignacio J. Araya ◽  
Robert B. Mann ◽  
Rodrigo Olea

Abstract We study the renormalization of Entanglement Entropy in holographic CFTs dual to Lovelock gravity. It is known that the holographic EE in Lovelock gravity is given by the Jacobson-Myers (JM) functional. As usual, due to the divergent Weyl factor in the Fefferman-Graham expansion of the boundary metric for Asymptotically AdS spaces, this entropy functional is infinite. By considering the Kounterterm renormalization procedure, which utilizes extrinsic boundary counterterms in order to renormalize the on-shell Lovelock gravity action for AAdS spacetimes, we propose a new renormalization prescription for the Jacobson-Myers functional. We then explicitly show the cancellation of divergences in the EE up to next-to-leading order in the holographic radial coordinate, for the case of spherical entangling surfaces. Using this new renormalization prescription, we directly find the C−function candidates for odd and even dimensional CFTs dual to Lovelock gravity. Our results illustrate the notable improvement that the Kounterterm method affords over other approaches, as it is non-perturbative and does not require that the Lovelock theory has limiting Einstein behavior.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Donald Marolf ◽  
Shannon Wang ◽  
Zhencheng Wang

Abstract Recent results suggest that new corrections to holographic entanglement entropy should arise near phase transitions of the associated Ryu-Takayanagi (RT) surface. We study such corrections by decomposing the bulk state into fixed-area states and conjecturing that a certain ‘diagonal approximation’ will hold. In terms of the bulk Newton constant G, this yields a correction of order O(G−1/2) near such transitions, which is in particular larger than generic corrections from the entanglement of bulk quantum fields. However, the correction becomes exponentially suppressed away from the transition. The net effect is to make the entanglement a smooth function of all parameters, turning the RT ‘phase transition’ into a crossover already at this level of analysis.We illustrate this effect with explicit calculations (again assuming our diagonal approximation) for boundary regions given by a pair of disconnected intervals on the boundary of the AdS3 vacuum and for a single interval on the boundary of the BTZ black hole. In a natural large-volume limit where our diagonal approximation clearly holds, this second example verifies that our results agree with general predictions made by Murthy and Srednicki in the context of chaotic many-body systems. As a further check on our conjectured diagonal approximation, we show that it also reproduces the O(G−1/2) correction found Penington et al. for an analogous quantum RT transition. Our explicit computations also illustrate the cutoff-dependence of fluctuations in RT-areas.


2018 ◽  
Vol 2018 ◽  
pp. 1-27
Author(s):  
Sagar F. Lokhande

We use a simple holographic toy model to study global quantum quenches in strongly coupled, hyperscaling-violating-Lifshitz quantum field theories using entanglement entropy as a probe. Generalizing our conformal field theory results, we show that the holographic entanglement entropy of small subsystems can be written as a simple linear response relation. We use this relation to derive a time-dependent first law of entanglement entropy. In general, this law has a time-dependent term resembling relative entropy which we propose as a good order parameter to characterize out-of-equilibrium states in the post-quench evolution. We use these tools to study a broad class of quantum quenches in detail: instantaneous, power law, and periodic.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850008
Author(s):  
Sen Hu ◽  
Guozhen Wu

We consider backreacted [Formula: see text] coupled with [Formula: see text] massive flavors introduced by D7 branes. The backreacted geometry is in the Veneziano limit with fixed [Formula: see text]. By dividing one of the directions into a line segment with length l, we get two subspaces. Then we calculate the entanglement entropy between them. With the method of [I. R. Klebanov, D. Kutasov and A. Murugan, Nucl. Phys. B 796, 274 (2008)], we are able to find the cut-off independent part of the entanglement entropy and finally find that this geometry shows no confinement/deconfinement phase transition at zero temperature from the holographic entanglement entropy point of view similar to the case in pure [Formula: see text].


2017 ◽  
Vol 2017 (2) ◽  
Author(s):  
Ahmed Almheiri ◽  
Xi Dong ◽  
Brian Swingle

Sign in / Sign up

Export Citation Format

Share Document