scholarly journals Argyres-Douglas theories, S-duality and AGT correspondence

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Takuya Kimura ◽  
Takahiro Nishinaka ◽  
Yuji Sugawara ◽  
Takahiro Uetoko

Abstract We propose a Nekrasov-type formula for the instanton partition functions of four-dimensional $$ \mathcal{N} $$ N = 2 U(2) gauge theories coupled to (A1, D2n) Argyres-Douglas theories. This is carried out by extending the generalized AGT correspondence to the case of U(2) gauge group, which requires us to define irregular states of the direct sum of Virasoro and Heisenberg algebras. Using our formula, one can evaluate the contribution of the (A1, D2n) theory at each fixed point on the U(2) instanton moduli space. As an application, we evaluate the instanton partition function of the (A3, A3) theory to find it in a peculiar relation to that of SU(2) gauge theory with four fundamental flavors. From this relation, we read off how the S-duality group acts on the UV gauge coupling of the (A3, A3) theory.

2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Giulio Bonelli ◽  
Francesco Fucito ◽  
Jose Francisco Morales ◽  
Massimiliano Ronzani ◽  
Ekaterina Sysoeva ◽  
...  

AbstractWe compute the $$\mathcal{N}=2$$ N = 2 supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kähler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $$\mathbb {C}^2$$ C 2 . The evaluation of these residues is greatly simplified by using an “abstruse duality” that relates the residues at the poles of the one-loop and instanton parts of the $$\mathbb {C}^2$$ C 2 partition function. As particular cases, our formulae compute the SU(2) and SU(3) equivariant Donaldson invariants of $$\mathbb {P}^2$$ P 2 and $$\mathbb {F}_n$$ F n and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the SU(2) case. Finally, we show that the U(1) self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $$\mathcal {N}=2$$ N = 2 analog of the $$\mathcal {N}=4$$ N = 4 holomorphic anomaly equations.


1991 ◽  
Vol 06 (37) ◽  
pp. 3385-3396 ◽  
Author(s):  
KEI-ICHI KONDO ◽  
SUSUMU SHUTO ◽  
KOICHI YAMAWAKI

We investigate the phase structure of (QCD-like) gauged Nambu-Jona-Lasinio model (QCD-like gauge theories plus four-fermion interactions) based on the ladder Schwinger-Dyson equation with one-loop running gauge coupling. Through analytical and numerial studies, we establish two-fixed points structure, one with a large anomalous dimension γm ≃ 2 and the other with a small one γm ≃ 0. We further obtain the power critical exponents through the equation of state, which, as they stand, imply that the former fixed point is a Gaussian fixed point. We emphasize that logarithmic corrections due to the gauge interaction is crucial to obtaining an interacting continuum theory at this fixed point.


Author(s):  
Thomas DeGrand

I give an elementary introduction to the study of gauge theories coupled to fermions with many degrees of freedom. Besides their intrinsic interest, these theories are candidates for non-perturbative extensions of the Higgs sector of the standard model. While related to quantum chromodynamics, these systems can exhibit very different behaviour from it: they can possess a running gauge coupling with an infrared-attractive fixed point. I briefly survey recent lattice work in this area.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Arash Arabi Ardehali ◽  
Junho Hong

Abstract We present a prototype for Wilsonian analysis of asymptotics of supersymmetric partition functions of non-abelian gauge theories. Localization allows expressing such partition functions as an integral over a BPS moduli space. When the limit of interest introduces a scale hierarchy in the problem, asymptotics of the partition function is obtained in the Wilsonian approach by i) decomposing (in some suitable scheme) the BPS moduli space into various patches according to the set of light fields (lighter than the scheme dependent cut-off Λ) they support, ii) localizing the partition function of the effective field theory on each patch (with cut-offs set by the scheme), and iii) summing up the contributions of all patches to obtain the final asymptotic result (which is scheme-independent and accurate as Λ → ∞). Our prototype concerns the Cardy-like asymptotics of the 4d superconformal index, which has been of interest recently for its application to black hole microstate counting in AdS5/CFT4. As a byproduct of our analysis we obtain the most general asymptotic expression for the index of gauge theories in the Cardy-like limit, encompassing and extending all previous results.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
M. Billò ◽  
M. Frau ◽  
F. Fucito ◽  
L. Gallot ◽  
A. Lerda ◽  
...  

Abstract We study non-perturbative effects in supersymmetric U(N) gauge theories in eight dimensions realized by means of D(–1)/D7-brane systems with non-trivial world-volume fluxes turned on. Using an explicit string construction in terms of vertex operators, we derive the action for the open strings ending on the D(–1)-branes and exhibit its BRST structure. The space of vacua for these open strings is shown to be in correspondence with the moduli space of generalized ADHM gauge connections which trigger the non-perturbative corrections in the eight-dimensional theory. These corrections are computed via localization and turn out to depend on the curved background used to localize the integrals on the instanton moduli space, and vanish in flat space. Finally, we show that for specific choices of the background the instanton partition functions reduce to weighted sums of the solid partitions of the integers.


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


1999 ◽  
Author(s):  
Taichi Itoh ◽  
Yoonbai Kim

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Nathaniel Craig ◽  
Isabel Garcia Garcia ◽  
Graham D. Kribs

Abstract Massive U(1) gauge theories featuring parametrically light vectors are suspected to belong in the Swampland of consistent EFTs that cannot be embedded into a theory of quantum gravity. We study four-dimensional, chiral U(1) gauge theories that appear anomalous over a range of energies up to the scale of anomaly-cancelling massive chiral fermions. We show that such theories must be UV-completed at a finite cutoff below which a radial mode must appear, and cannot be decoupled — a Stückelberg limit does not exist. When the infrared fermion spectrum contains a mixed U(1)-gravitational anomaly, this class of theories provides a toy model of a boundary into the Swampland, for sufficiently small values of the vector mass. In this context, we show that the limit of a parametrically light vector comes at the cost of a quantum gravity scale that lies parametrically below MP1, and our result provides field theoretic evidence for the existence of a Swampland of EFTs that is disconnected from the subset of theories compatible with a gravitational UV-completion. Moreover, when the low energy theory also contains a U(1)3 anomaly, the Weak Gravity Conjecture scale makes an appearance in the form of a quantum gravity cutoff for values of the gauge coupling above a certain critical size.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Soumyadeep Chaudhuri ◽  
Eliezer Rabinovici

Abstract Considering marginally relevant and relevant deformations of the weakly coupled (3 + 1)-dimensional large N conformal gauge theories introduced in [1], we study the patterns of phase transitions in these systems that lead to a symmetry-broken phase in the high temperature limit. These deformations involve only the scalar fields in the models. The marginally relevant deformations are obtained by varying certain double trace quartic couplings between the scalar fields. The relevant deformations, on the other hand, are obtained by adding masses to the scalar fields while keeping all the couplings frozen at their fixed point values. At the N → ∞ limit, the RG flows triggered by these deformations approach the aforementioned weakly coupled CFTs in the UV regime. These UV fixed points lie on a conformal manifold with the shape of a circle in the space of couplings. As shown in [1], in certain parameter regimes a subset of points on this manifold exhibits thermal order characterized by the spontaneous breaking of a global ℤ2 or U(1) symmetry and Higgsing of a subset of gauge bosons at all nonzero temperatures. We show that the RG flows triggered by the marginally relevant deformations lead to a weakly coupled IR fixed point which lacks the thermal order. Thus, the systems defined by these RG flows undergo a transition from a disordered phase at low temperatures to an ordered phase at high temperatures. This provides examples of both inverse symmetry breaking and symmetry nonrestoration. For the relevant deformations, we demonstrate that a variety of phase transitions are possible depending on the signs and magnitudes of the squares of the masses added to the scalar fields. Using thermal perturbation theory, we derive the approximate values of the critical temperatures for all these phase transitions. All the results are obtained at the N → ∞ limit. Most of them are found in a reliable weak coupling regime and for others we present qualitative arguments.


2019 ◽  
Vol 34 (23) ◽  
pp. 1930011 ◽  
Author(s):  
Cyril Closset ◽  
Heeyeon Kim

We give a pedagogical introduction to the study of supersymmetric partition functions of 3D [Formula: see text] supersymmetric Chern–Simons-matter theories (with an [Formula: see text]-symmetry) on half-BPS closed three-manifolds — including [Formula: see text], [Formula: see text], and any Seifert three-manifold. Three-dimensional gauge theories can flow to nontrivial fixed points in the infrared. In the presence of 3D [Formula: see text] supersymmetry, many exact results are known about the strongly-coupled infrared, due in good part to powerful localization techniques. We review some of these techniques and emphasize some more recent developments, which provide a simple and comprehensive formalism for the exact computation of half-BPS observables on closed three-manifolds (partition functions and correlation functions of line operators). Along the way, we also review simple examples of 3D infrared dualities. The computation of supersymmetric partition functions provides exceedingly precise tests of these dualities.


Sign in / Sign up

Export Citation Format

Share Document