scholarly journals Holographic Coulomb branch solitons, quasinormal modes, and black holes

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
S. Prem Kumar ◽  
Andy O’Bannon ◽  
Anton Pribytok ◽  
Ronnie Rodgers

Abstract Four-dimensional $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory, at a point on the Coulomb branch where SU(N) gauge symmetry is spontaneously broken to SU(N − 1) × U(1), admits BPS solitons describing a spherical shell of electric and/or magnetic charges enclosing a region of unbroken gauge symmetry. These solitons have been proposed as gauge theory models for certain features of asymptotically flat extremal black holes. In the ’t Hooft large N limit with large ’t Hooft coupling, these solitons are holographically dual to certain probe D3-branes in the AdS5 × S5 solution of type IIB supergravity. By studying linearised perturbations of these D3-branes, we show that the solitons support quasinormal modes with a spectrum of frequencies sharing both qualitative and quantitative features with asymptotically flat extremal black holes.

2020 ◽  
Vol 2020 (2) ◽  
Author(s):  
Yasuhiro Sekino

Abstract Gauge/gravity correspondence is regarded as a powerful tool for the study of strongly coupled quantum systems, but its proof is not available. An unresolved issue that should be closely related to the proof is what kind of correspondence exists, if any, when gauge theory is weakly coupled. We report progress about this limit for the case associated with D$p$-branes ($0\le p\le 4$), namely, the duality between the $(p+1)$D maximally supersymmetric Yang–Mills theory and superstring theory on the near-horizon limit of the D$p$-brane solution. It has been suggested by supergravity analysis that the two-point functions of certain operators in gauge theory obey a power law with the power different from the free-field value for $p\neq 3$. In this work, we show for the first time that the free-field result can be reproduced by superstring theory on the strongly curved background. The operator that we consider is of the form ${\rm Tr}(Z^J)$, where $Z$ is a complex combination of two scalar fields. We assume that the corresponding string has the worldsheet spatial direction discretized into $J$ bits, and use the fact that these bits become non-interacting when ’t Hooft coupling is zero.


2013 ◽  
Vol 28 (27) ◽  
pp. 1350109 ◽  
Author(s):  
I. SAKALLI

In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ϵ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050193
Author(s):  
Cai-Ying Shao ◽  
Yu Hu ◽  
Yu-Jie Tan ◽  
Cheng-Gang Shao ◽  
Kai Lin ◽  
...  

In this paper, we study the quasinormal modes of the massless Dirac field for charged black holes in Rastall gravity. The spherically symmetric black hole solutions in question are characterized by the presence of a power-Maxwell field, surrounded by the quintessence fluid. The calculations are carried out by employing the WKB approximations up to the 13th-order, as well as the matrix method. The temporal evolution of the quasinormal modes is investigated by using the finite difference method. Through numerical simulations, the properties of the quasinormal frequencies are analyzed, including those for the extremal black holes. Among others, we explore the case of a second type of extremal black holes regarding the Nariai solution, where the cosmical and event horizon coincide. The results obtained by the WKB approaches are found to be mostly consistent with those by the matrix method. It is observed that the magnitudes of both real and imaginary parts of the quasinormal frequencies increase with increasing [Formula: see text], the spin–orbit quantum number. Also, the roles of the parameters [Formula: see text] and [Formula: see text], associated with the electric charge and the equation of state of the quintessence field, respectively, are investigated regarding their effects on the quasinormal frequencies. The magnitude of the electric charge is found to sensitively affect the time scale of the first stage of quasinormal oscillations, after which the temporal oscillations become stabilized. It is demonstrated that the black hole solutions for Rastall gravity in asymptotically flat spacetimes are equivalent to those in Einstein gravity, featured by different asymptotical spacetime properties. As one of its possible consequences, we also investigate the behavior of the late-time tails of quasinormal models in the present model. It is found that the asymptotical behavior of the late-time tails of quasinormal modes in Rastall theory is governed by the asymptotical properties of the spacetimes of their counterparts in Einstein gravity.


Author(s):  
D.G.C. McKeon

Using a gauge symmetry derived by applying the Dirac constraint formalism to supergravity with a cosmological term in 2 + 1 dimensions, we construct a gauge theory with many characteristics of Yang-Mills theory. The gauge transformation mixes two Bosonic fields and one Fermionic field.


2018 ◽  
Vol 175 ◽  
pp. 11008 ◽  
Author(s):  
Joel Giedt ◽  
Simon Catterall ◽  
Raghav Govind Jha

In twisted and orbifold formulations of lattice N = 4 super Yang-Mills, the gauge group is necessarily U(1) × SU(N), in order to be consistent with the exact scalar supersymmetry Q. In the classical continuum limit of the theory, where one expands the link fields around a point in the moduli space and sends the lattice spacing to zero, the diagonal U(1) modes decouple from the SU(N) sector, and give an uninteresting free theory. However, lattice artifacts (described by irrelevant operators according to naive power-counting) couple the two sectors, so removing the U(1) modes is a delicate issue. We describe how this truncation to an SU(N) gauge theory can be obtained in a systematic way, with violations of Q that fall off as powers of 1=N2. We are able to achieve this while retaining exact SU(N) lattice gauge symmetry at all N, and provide both theoretical arguments and numerical evidence for the 1=N2 suppression of Q violation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Laura Donnay ◽  
Gaston Giribet ◽  
Felipe Rosso

Abstract We define and study asymptotic Killing and conformal Killing vectors in d-dimensional Minkowski, (A)dS, ℝ × Sd−1 and AdS2× Sd−2. We construct the associated quantum charges for an arbitrary CFT and show they satisfy a closed algebra that includes the BMS as a sub-algebra (i.e. supertranslations and superrotations) plus a novel transformation we call ‘superdilations’. We study representations of this algebra in the Hilbert space of the CFT, as well as the action of the finite transformations obtained by exponentiating the charges. In the context of the AdS/CFT correspondence, we propose a bulk holographic description in semi-classical gravity that reproduces the results obtained from CFT computations. We discuss the implications of our results regarding quantum hairs of asymptotically flat (near-)extremal black holes.


Sign in / Sign up

Export Citation Format

Share Document