scholarly journals Quantum BMS transformations in conformally flat space-times and holography

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Laura Donnay ◽  
Gaston Giribet ◽  
Felipe Rosso

Abstract We define and study asymptotic Killing and conformal Killing vectors in d-dimensional Minkowski, (A)dS, ℝ × Sd−1 and AdS2× Sd−2. We construct the associated quantum charges for an arbitrary CFT and show they satisfy a closed algebra that includes the BMS as a sub-algebra (i.e. supertranslations and superrotations) plus a novel transformation we call ‘superdilations’. We study representations of this algebra in the Hilbert space of the CFT, as well as the action of the finite transformations obtained by exponentiating the charges. In the context of the AdS/CFT correspondence, we propose a bulk holographic description in semi-classical gravity that reproduces the results obtained from CFT computations. We discuss the implications of our results regarding quantum hairs of asymptotically flat (near-)extremal black holes.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Yu-Bo Ma ◽  
Li-Chun Zhang ◽  
Jian Liu ◽  
Ren Zhao ◽  
Shuo Cao

In this paper, by analyzing the thermodynamic properties of charged AdS black hole and asymptotically flat space-time charged black hole in the vicinity of the critical point, we establish the correspondence between the thermodynamic parameters of asymptotically flat space-time and nonasymptotically flat space-time, based on the equality of black hole horizon area in the two different types of space-time. The relationship between the cavity radius (which is introduced in the study of asymptotically flat space-time charged black holes) and the cosmological constant (which is introduced in the study of nonasymptotically flat space-time) is determined. The establishment of the correspondence between the thermodynamics parameters in two different types of space-time is beneficial to the mutual promotion of different time-space black hole research, which is helpful to understand the thermodynamics and quantum properties of black hole in space-time.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
S. Prem Kumar ◽  
Andy O’Bannon ◽  
Anton Pribytok ◽  
Ronnie Rodgers

Abstract Four-dimensional $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory, at a point on the Coulomb branch where SU(N) gauge symmetry is spontaneously broken to SU(N − 1) × U(1), admits BPS solitons describing a spherical shell of electric and/or magnetic charges enclosing a region of unbroken gauge symmetry. These solitons have been proposed as gauge theory models for certain features of asymptotically flat extremal black holes. In the ’t Hooft large N limit with large ’t Hooft coupling, these solitons are holographically dual to certain probe D3-branes in the AdS5 × S5 solution of type IIB supergravity. By studying linearised perturbations of these D3-branes, we show that the solitons support quasinormal modes with a spectrum of frequencies sharing both qualitative and quantitative features with asymptotically flat extremal black holes.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Victor Godet ◽  
Charles Marteau

Abstract We study $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ gravity, a variant of the matterless Callan-Giddings-Harvey-Strominger model. We show that it describes a universal sector of the near horizon perturbations of non-extremal black holes in higher dimensions. In many respects this theory can be viewed as a flat space analog of Jackiw-Teitelboim gravity. The result for the Euclidean path integral implies that $$ \hat{\mathrm{CGHS}} $$ CGHS ̂ is dual to a Gaussian ensemble that we describe in detail. The simplicity of this theory allows us to compute exact quantities such as the quenched free energy and provides a useful playground to study baby universes, averages and factorization. In particular we derive a “wormhole = diagonal” identity. We also give evidence for the existence of a non-perturbative completion in terms of a matrix model. Finally, flat wormhole solutions in this model are discussed.


2001 ◽  
Vol 16 (26) ◽  
pp. 1703-1710 ◽  
Author(s):  
DONAM YOUM

We study static brane configurations in the bulk background of the topological black holes in asymptotically flat space–time and find that such configurations are possible even for flat black hole horizon, unlike the AdS black hole case. We construct the brane world model with an orbifold structure S1/Z2 in such bulk background and study massless bulk scalar field.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Dmitri V. Alekseevsky ◽  
Alessio Marrani ◽  
Andrea Spiro

Abstract We consider the static, spherically symmetric and asymptotically flat BPS extremal black holes in ungauged N = 2 D = 4 supergravity theories, in which the scalar manifold of the vector multiplets is homogeneous. By a result of Shmakova on the BPS attractor equations, the entropy of this kind of black holes can be expressed only in terms of their electric and magnetic charges, provided that the inverse of a certain quadratic map (uniquely determined by the prepotential of the theory) is given. This inverse was previously known just for the cases in which the scalar manifold of the theory is a homogeneous symmetric space. In this paper we use Vinberg’s theory of homogeneous cones to determine an explicit expression for such an inverse, under the assumption that the scalar manifold is homogeneous, but not necessarily symmetric. As immediate consequence, we get a formula for the entropy of BPS black holes that holds in any model of N = 2 supergravity with homogeneous scalar manifold.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Glenn Barnich ◽  
Pierre-Henry Lambert

The symmetry algebra of asymptotically flat spacetimes at null infinity in four dimensions in the sense of Newman and Unti is revisited. As in the Bondi-Metzner-Sachs gauge, it is shown to be isomorphic to the direct sum of the abelian algebra of infinitesimal conformal rescalings with𝔟𝔪𝔰4. The latter algebra is the semidirect sum of infinitesimal supertranslations with the conformal Killing vectors of the Riemann sphere. Infinitesimal local conformal transformations can then consistently be included. We work out the local conformal properties of the relevant Newman-Penrose coefficients, construct the surface charges, and derive their algebra.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Wontae Kim ◽  
Mungon Nam

AbstractThe island rule for the entanglement entropy is applied to an eternal Reissner–Nordström black hole. The key ingredient is that the black hole is assumed to be in thermal equilibrium with a heat bath of an arbitrary temperature and so the generalized entropy is treated as being off-shell. Taking the on-shell condition to the off-shell generalized entropy, we find the generalized entropy and then obtain the entanglement entropy following the island rule. For the non-extremal black hole, the entanglement entropy grows linearly in time and can be saturated after the Page time as expected. The entanglement entropy also has a well-defined Schwarzschild limit. In the extremal black hole, the island prescription provides a logarithmically growing entanglement entropy in time and a constant entanglement entropy after the Page time. In the extremal black hole, the boundary of the island hits the curvature singularity where the semi-classical approximations appear invalid. To avoid encountering the curvature singularity, we apply this procedure to the Hayward black hole regular at the origin. Consequently, the presence of the island in extremal black holes can provide a finite entanglement entropy, which might imply non-trivial vacuum configurations of extremal black holes.


Sign in / Sign up

Export Citation Format

Share Document