scholarly journals Seiberg-like dualities for orthogonal and symplectic 3d $$ \mathcal{N} $$ = 2 gauge theories with boundaries

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We propose dualities of $$ \mathcal{N} $$ N = (0, 2) supersymmetric boundary conditions for 3d $$ \mathcal{N} $$ N = 2 gauge theories with orthogonal and symplectic gauge groups. We show that the boundary ’t Hooft anomalies and half-indices perfectly match for each pair of the proposed dual boundary conditions.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Tadashi Okazaki ◽  
Douglas J. Smith

Abstract We derive general BPS boundary conditions in two-dimensional $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories. We analyze the solutions of these boundary conditions, and in particular those that allow the bulk fields to have poles at the boundary. We also present the brane configurations for the half- and quarter-BPS boundary conditions of the $$ \mathcal{N} $$ N = (2, 2) supersymmetric gauge theories in terms of branes in Type IIA string theory. We find that both A-type and B-type brane configurations are lifted to M-theory as a system of M2-branes ending on an M5-brane wrapped on a product of a holomorphic curve in ℂ2 with a special Lagrangian 3-cycle in ℂ3.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 393
Author(s):  
Jan F. Haase ◽  
Luca Dellantonio ◽  
Alessio Celi ◽  
Danny Paulson ◽  
Angus Kan ◽  
...  

Gauge theories establish the standard model of particle physics, and lattice gauge theory (LGT) calculations employing Markov Chain Monte Carlo (MCMC) methods have been pivotal in our understanding of fundamental interactions. The present limitations of MCMC techniques may be overcome by Hamiltonian-based simulations on classical or quantum devices, which further provide the potential to address questions that lay beyond the capabilities of the current approaches. However, for continuous gauge groups, Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation. Current truncation schemes require dramatically increasing computational resources at small values of the bare couplings, where magnetic field effects become important. Such limitation precludes one from `taking the continuous limit' while working with finite resources. To overcome this limitation, we provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation. Our new method allows for calculations at arbitrary values of the bare coupling and lattice spacing. The approach consists of the combination of a Hilbert space truncation with a regularization of the gauge group, which permits an efficient description of the magnetically-dominated regime. We focus here on Abelian gauge theories and use 2+1 dimensional quantum electrodynamics as a benchmark example to demonstrate this efficient framework to achieve the continuum limit in LGTs. This possibility is a key requirement to make quantitative predictions at the field theory level and offers the long-term perspective to utilise quantum simulations to compute physically meaningful quantities in regimes that are precluded to quantum Monte Carlo.


2013 ◽  
Vol 104 (4) ◽  
pp. 465-493 ◽  
Author(s):  
Francesco Benini ◽  
Richard Eager ◽  
Kentaro Hori ◽  
Yuji Tachikawa

2019 ◽  
Vol 940 ◽  
pp. 351-376 ◽  
Author(s):  
Antoine Bourget ◽  
Alessandro Pini ◽  
Diego Rodríguez-Gómez
Keyword(s):  

1981 ◽  
Vol 105 (2-3) ◽  
pp. 197-200 ◽  
Author(s):  
P. Cvitanović ◽  
J. Greensite ◽  
B. Lautrup

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Andrés Collinucci ◽  
Roberto Valandro

Abstract We propose a string theory realization of three-dimensional $$ \mathcal{N} $$ N = 4 quiver gauge theories with special unitary gauge groups. This is most easily understood in type IIA string theory with D4-branes wrapped on holomorphic curves in local K3’s, by invoking the Stückelberg mechanism. From the type IIB perspective, this is understood as simply compactifying the familiar Hanany-Witten (HW) constructions on a T3. The mirror symmetry duals are easily derived. We illustrate this with various examples of mirror pairs.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
Reona Arai ◽  
Shota Fujiwara ◽  
Yosuke Imamura ◽  
Tatsuya Mori

Abstract The superconformal index of quiver gauge theories realized on D3-branes in toric Calabi–Yau cones is investigated. We use the AdS/CFT correspondence and study D3-branes wrapped on supersymmetric cycles. We focus on brane configurations in which a single D3-brane is wrapped on a cycle, and we do not take account of branes with multiple wrapping. We propose a formula that gives finite-$N$ corrections to the index caused by such brane configurations. We compare the predictions of the formula for several examples with the results on the gauge theory side obtained by using localization for small sizes of gauge groups, and confirm that the formula correctly reproduces the finite-$N$ corrections up to the expected order.


Sign in / Sign up

Export Citation Format

Share Document