scholarly journals Spherically symmetric static solutions in a nonlocal infrared modification of General Relativity

2014 ◽  
Vol 2014 (8) ◽  
Author(s):  
Alex Kehagias ◽  
Michele Maggiore
Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


1994 ◽  
Vol 11 (4) ◽  
pp. L69-L72 ◽  
Author(s):  
Salah Haggag ◽  
Joseph Hajj-Boutros

2014 ◽  
Vol 23 (08) ◽  
pp. 1450068 ◽  
Author(s):  
O. Goldoni ◽  
M. F. A. da Silva ◽  
G. Pinheiro ◽  
R. Chan

In this paper, we have studied nonstationary radiative spherically symmetric spacetime, in general covariant theory (U(1) extension) of Hořava–Lifshitz (HL) gravity without the projectability condition and in the infrared (IR) limit. The Newtonian prepotential φ was assumed null. We have shown that there is not the analogue of the Vaidya's solution in the Hořava–Lifshitz Theory (HLT), as we know in the General Relativity Theory (GRT). Therefore, we conclude that the gauge field A should interact with the null radiation field of the Vaidya's spacetime in the HLT.


2021 ◽  
Vol 81 (6) ◽  
Author(s):  
G. G. L. Nashed ◽  
S. D. Odintsov ◽  
V. K. Oikonomou

AbstractIn this paper we shall consider spherically symmetric spacetime solutions describing the interior of stellar compact objects, in the context of higher-order curvature theory of the $${{\mathrm {f(R)}}}$$ f ( R ) type. We shall derive the non-vacuum field equations of the higher-order curvature theory, without assuming any specific form of the $${{\mathrm {f(R)}}}$$ f ( R ) theory, specifying the analysis for a spherically symmetric spacetime with two unknown functions. We obtain a system of highly non-linear differential equations, which consists of four differential equations with six unknown functions. To solve such a system, we assume a specific form of metric potentials, using the Krori–Barua ansatz. We successfully solve the system of differential equations, and we derive all the components of the energy–momentum tensor. Moreover, we derive the non-trivial general form of $${{\mathrm {f(R)}}}$$ f ( R ) that may generate such solutions and calculate the dynamic Ricci scalar of the anisotropic star. Accordingly, we calculate the asymptotic form of the function $${\mathrm {f(R)}}$$ f ( R ) , which is a polynomial function. We match the derived interior solution with the exterior one, which was derived in [1], with the latter also resulting to a non-trivial form of the Ricci scalar. Notably but rather expected, the exterior solution differs from the Schwarzschild one in the context of general relativity. The matching procedure will eventually relate two constants with the mass and radius of the compact stellar object. We list the necessary conditions that any compact anisotropic star must satisfy and explain in detail that our model bypasses all of these conditions for a special compact star $$\textit{Her X--1}$$ Her X - - 1 , which has an estimated mass and radius $$(mass = 0.85 \pm 0.15M_{\circledcirc }\ and\ radius = 8.1 \pm 0.41~\text {km}$$ ( m a s s = 0.85 ± 0.15 M ⊚ a n d r a d i u s = 8.1 ± 0.41 km ). Moreover, we study the stability of this model by using the Tolman–Oppenheimer–Volkoff equation and adiabatic index, and we show that the considered model is different and more stable compared to the corresponding models in the context of general relativity.


2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.


Universe ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 39 ◽  
Author(s):  
Denis Arruga ◽  
Jibril Ben Achour ◽  
Karim Noui

Effective models of black holes interior have led to several proposals for regular black holes. In the so-called polymer models, based on effective deformations of the phase space of spherically symmetric general relativity in vacuum, one considers a deformed Hamiltonian constraint while keeping a non-deformed vectorial constraint, leading under some conditions to a notion of deformed covariance. In this article, we revisit and study further the question of covariance in these deformed gravity models. In particular, we propose a Lagrangian formulation for these deformed gravity models where polymer-like deformations are introduced at the level of the full theory prior to the symmetry reduction and prior to the Legendre transformation. This enables us to test whether the concept of deformed covariance found in spherically symmetric vacuum gravity can be extended to the full theory, and we show that, in the large class of models we are considering, the deformed covariance cannot be realized beyond spherical symmetry in the sense that the only deformed theory which leads to a closed constraints algebra is general relativity. Hence, we focus on the spherically symmetric sector, where there exist non-trivial deformed but closed constraints algebras. We investigate the possibility to deform the vectorial constraint as well and we prove that non-trivial deformations of the vectorial constraint with the condition that the constraints algebra remains closed do not exist. Then, we compute the most general deformed Hamiltonian constraint which admits a closed constraints algebra and thus leads to a well-defined effective theory associated with a notion of deformed covariance. Finally, we study static solutions of these effective theories and, remarkably, we solve explicitly and in full generality the corresponding modified Einstein equations, even for the effective theories which do not satisfy the closeness condition. In particular, we give the expressions of the components of the effective metric (for spherically symmetric black holes interior) in terms of the functions that govern the deformations of the theory.


2019 ◽  
Vol 97 (12) ◽  
pp. 1323-1331 ◽  
Author(s):  
S.K. Maurya ◽  
S. Roy Chowdhury ◽  
Saibal Ray ◽  
B. Dayanandan

In the present paper we study compact stars under the background of Einstein–Maxwell space–time, where the 4-dimensional spherically symmetric space–time of class 1 along with the Karmarkar condition has been adopted. The investigations, via the set of exact solutions, show several important results, such as (i) the value of density on the surface is finite; (ii) due to the presence of the electric field, the outer surface or the crust region can be considered to be made of electron cloud; (iii) the charge increases rapidly after crossing a certain cutoff region (r/R ≈ 0.3); and (iv) the avalanche of charge has a possible interaction with the particles that are away from the center. As the stellar structure supports all the physical tests performed on it, therefore the overall observation is that the model provides a physically viable and stable compact star.


Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 845
Author(s):  
Joel Franklin

The Weyl method for finding solutions in general relativity using symmetry by varying an action with respect to a reduced set of field variables is known to fail in some cases. We add to the list of failures by considering an application of the Weyl method to a magnetically charged spherically symmetric source, obtaining an incorrect geometry. This is surprising, because the same method, applied to electrically charged central bodies correctly produces the Reissner-Nordström spacetime.


Sign in / Sign up

Export Citation Format

Share Document