scholarly journals The planar limit of $$ \mathcal{N} $$ = 2 chiral correlators

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Bartomeu Fiol ◽  
Alan Rios Fukelman

Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of $$ \mathcal{N} $$ N = 2 SQCD on S4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4.

1991 ◽  
Vol 06 (09) ◽  
pp. 781-787
Author(s):  
G. FERRETTI

The hermitian matrix model with quartic interaction is studied in presence of fermionic variables. We obtain the contribution to the free energy due to the presence of fermions. The first two terms beyond the planar limit are explicitly found for all values of the coupling constant g. These terms represent the solution of the counting problem for vacuum diagrams with one or two fermionic loops.


2014 ◽  
Vol 03 (03) ◽  
pp. 1450013 ◽  
Author(s):  
O. Marchal ◽  
B. Eynard ◽  
M. Bergère

The goal of this paper is to rederive the connection between the Painlevé 5 integrable system and the universal eigenvalues correlation functions of double-scaled Hermitian matrix models, through the topological recursion method. More specifically we prove, to all orders, that the WKB asymptotic expansions of the τ-function as well as of determinantal formulas arising from the Painlevé 5 Lax pair are identical to the large N double scaling asymptotic expansions of the partition function and correlation functions of any Hermitian matrix model around a regular point in the bulk. In other words, we rederive the "sine-law" universal bulk asymptotic of large random matrices and provide an alternative perturbative proof of universality in the bulk with only algebraic methods. Eventually we exhibit the first orders of the series expansion up to O(N-5).


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Shai M. Chester ◽  
Silviu S. Pufu

Abstract When the SU(N) $$ \mathcal{N} $$ N = 4 super-Yang-Mills (SYM) theory with complexified gauge coupling τ is placed on a round four-sphere and deformed by an $$ \mathcal{N} $$ N = 2-preserving mass parameter m, its free energy F (m, τ,$$ \overline{\tau} $$ τ ¯ ) can be computed exactly using supersymmetric localization. In this work, we derive a new exact relation between the fourth derivative $$ {\partial}_m^4F\left(m,\tau, \overline{\tau}\right)\left|{{}_m}_{=0}\right. $$ ∂ m 4 F m τ τ ¯ m = 0 of the sphere free energy and the integrated stress-tensor multiplet four-point function in the $$ \mathcal{N} $$ N = 4 SYM theory. We then apply this exact relation, along with various other constraints derived in previous work (coming from analytic bootstrap, the mixed derivative $$ {\partial}_{\tau }{\partial}_{\overline{\tau}}{\partial}_m^2F\left(m,\tau, \overline{\tau}\right)\left|{{}_m}_{=0}\right. $$ ∂ τ ∂ τ ¯ ∂ m 2 F m τ τ ¯ m = 0 , and type IIB superstring theory scattering amplitudes) to determine various perturbative terms in the large N and large ’t Hooft coupling λ expansion of the $$ \mathcal{N} $$ N = 4 SYM correlator at separated points. In particular, we determine the leading large-λ term in the $$ \mathcal{N} $$ N = 4 SYM correlation function at order 1/N8. This is three orders beyond the planar limit.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
M. Billò ◽  
M. Frau ◽  
F. Galvagno ◽  
A. Lerda ◽  
A. Pini

Abstract We consider $$ \mathcal{N} $$ N = 2 superconformal quiver gauge theories in four dimensions and evaluate the chiral/anti-chiral correlators of single-trace operators. We show that it is convenient to form particular twisted and untwisted combinations of these operators suggested by the dual holographic description of the theory. The various twisted sectors are orthogonal and the correlators in each sector have always the same structure, as we show at the lowest orders in perturbation theory with Feynman diagrams. Using localization we then map the computation to a matrix model. In this way we are able to obtain formal expressions for the twisted correlators in the planar limit that are valid for all values of the ‘t Hooft coupling λ, and find that they are proportional to 1/λ at strong coupling. We successfully test the correctness of our extrapolation against a direct numerical evaluation of the matrix model and argue that the 1/λ behavior qualitatively agrees with the holographic description.


1993 ◽  
Vol 08 (30) ◽  
pp. 2875-2890 ◽  
Author(s):  
J. AMBJØRN ◽  
C. F. KRISTJANSEN

Loop equations of matrix models express the invariance of the models under field redefinitions. We use loop equations to prove that it is possible to define continuum times for the generic Hermitian one-matrix model such that all correlation functions in the double scaling limit agree with the corresponding correlation functions of the Kontsevich model expressed in terms of KdV times. In addition the double scaling limit of the partition function of the Hermitian matrix model agrees with the τ-function of the KdV hierarchy corresponding to the Kontsevich model (and not the square of the τ-function) except for some complications at genus zero.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
A. Andreev ◽  
A. Popolitov ◽  
A. Sleptsov ◽  
A. Zhabin

Abstract We study ћ expansion of the KP hierarchy following Takasaki-Takebe [1] considering several examples of matrix model τ-functions with natural genus expansion. Among the examples there are solutions of KP equations of special interest, such as generating function for simple Hurwitz numbers, Hermitian matrix model, Kontsevich model and Brezin-Gross-Witten model. We show that all these models with parameter ћ are τ-functions of the ћ-KP hierarchy and the expansion in ћ for the ћ-KP coincides with the genus expansion for these models. Furthermore, we show a connection of recent papers considering the ћ-formulation of the KP hierarchy [2, 3] with original Takasaki-Takebe approach. We find that in this approach the recovery of enumerative geometric meaning of τ-functions is straightforward and algorithmic.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shinji Hirano ◽  
Masaki Shigemori

Abstract We study the random geometry approach to the $$ T\overline{T} $$ T T ¯ deformation of 2d conformal field theory developed by Cardy and discuss its realization in a gravity dual. In this representation, the gravity dual of the $$ T\overline{T} $$ T T ¯ deformation becomes a straightforward translation of the field theory language. Namely, the dual geometry is an ensemble of AdS3 spaces or BTZ black holes, without a finite cutoff, but instead with randomly fluctuating boundary diffeomorphisms. This reflects an increase in degrees of freedom in the renormalization group flow to the UV by the irrelevant $$ T\overline{T} $$ T T ¯ operator. We streamline the method of computation and calculate the energy spectrum and the thermal free energy in a manner that can be directly translated into the gravity dual language. We further generalize this approach to correlation functions and reproduce the all-order result with universal logarithmic corrections computed by Cardy in a different method. In contrast to earlier proposals, this version of the gravity dual of the $$ T\overline{T} $$ T T ¯ deformation works not only for the energy spectrum and the thermal free energy but also for correlation functions.


Sign in / Sign up

Export Citation Format

Share Document