scholarly journals Symmetry-enriched quantum spin liquids in (3 + 1)d

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Po-Shen Hsin ◽  
Alex Turzillo

Abstract We use the intrinsic one-form and two-form global symmetries of (3+1)d bosonic field theories to classify quantum phases enriched by ordinary (0-form) global symmetry. Different symmetry-enriched phases correspond to different ways of coupling the theory to the background gauge field of the ordinary symmetry. The input of the classification is the higher-form symmetries and a permutation action of the 0-form symmetry on the lines and surfaces of the theory. From these data we classify the couplings to the background gauge field by the 0-form symmetry defects constructed from the higher-form symmetry defects. For trivial two-form symmetry the classification coincides with the classification for symmetry fractionalizations in (2 + 1)d. We also provide a systematic method to obtain the symmetry protected topological phases that can be absorbed by the coupling, and we give the relative ’t Hooft anomaly for different couplings. We discuss several examples including the gapless pure U(1) gauge theory and the gapped Abelian finite group gauge theory. As an application, we discover a tension with a conjectured duality in (3 + 1)d for SU(2) gauge theory with two adjoint Weyl fermions.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lucile Savary

AbstractThe search for truly quantum phases of matter is a center piece of modern research in condensed matter physics. Quantum spin liquids, which host large amounts of entanglement—an entirely quantum feature where one part of a system cannot be measured without modifying the rest—are exemplars of such phases. Here, we devise a realistic model which relies upon the well-known Haldane chain phase, i.e. the phase of spin-1 chains which host fractional excitations at their ends, akin to the hallmark excitations of quantum spin liquids. We tune our model to exactly soluble points, and find that the ground state realizes Haldane chains whose physical supports fluctuate, realizing both quantum spin liquid like and symmetry-protected topological phases. Crucially, this model is expected to describe actual materials, and we provide a detailed set of material-specific constraints which may be readily used for an experimental realization.


1989 ◽  
Vol 04 (14) ◽  
pp. 1343-1353 ◽  
Author(s):  
T.E. CLARK ◽  
C.-H. LEE ◽  
S.T. LOVE

The supersymmetric extensions of anti-symmetric tensor gauge theories and their associated tensor gauge symmetry transformations are constructed. The classical equivalence between such supersymmetric tensor gauge theories and supersymmetric non-linear sigma models is established. The global symmetry of the supersymmetric tensor gauge theory is gauged and the locally invariant action is obtained. The supercurrent on the Kähler manifold is found in terms of the supersymmetric tensor gauge field.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Po-Shen Hsin ◽  
Ho Tat Lam

Gauge theories in various dimensions often admit discrete theta angles, that arise from gauging a global symmetry with an additional symmetry protected topological (SPT) phase. We discuss how the global symmetry and ’t Hooft anomaly depends on the discrete theta angles by coupling the gauge theory to a topological quantum field theory (TQFT). We observe that gauging an Abelian subgroup symmetry, that participates in symmetry extension, with an additional SPT phase leads to a new theory with an emergent Abelian symmetry that also participates in a symmetry extension. The symmetry extension of the gauge theory is controlled by the discrete theta angle which comes from the SPT phase. We find that discrete theta angles can lead to two-group symmetry in 4d4d QCD with SU(N),SU(N)/\mathbb{Z}_kSU(N),SU(N)/ℤk or SO(N)SO(N) gauge groups as well as various 3d3d and 2d2d gauge theories.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. eaay0668 ◽  
Author(s):  
C. Broholm ◽  
R. J. Cava ◽  
S. A. Kivelson ◽  
D. G. Nocera ◽  
M. R. Norman ◽  
...  

Spin liquids are quantum phases of matter with a variety of unusual features arising from their topological character, including “fractionalization”—elementary excitations that behave as fractions of an electron. Although there is not yet universally accepted experimental evidence that establishes that any single material has a spin liquid ground state, in the past few years a number of materials have been shown to exhibit distinctive properties that are expected of a quantum spin liquid. Here, we review theoretical and experimental progress in this area.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Samuel Mañas-Valero ◽  
Benjamin M. Huddart ◽  
Tom Lancaster ◽  
Eugenio Coronado ◽  
Francis L. Pratt

AbstractQuantum materials exhibiting magnetic frustration are connected to diverse phenomena, including high Tc superconductivity, topological order, and quantum spin liquids (QSLs). A QSL is a quantum phase (QP) related to a quantum-entangled fluid-like state of matter. Previous experiments on QSL candidate materials are usually interpreted in terms of a single QP, although theories indicate that many distinct QPs are closely competing in typical frustrated spin models. Here we report on combined temperature-dependent muon spin relaxation and specific heat measurements for the triangular-lattice QSL candidate material 1T-TaS2 that provide evidence for competing QPs. The measured properties are assigned to arrays of individual QSL layers within the layered charge density wave structure of 1T-TaS2 and their characteristic parameters can be interpreted as those of distinct Z2 QSL phases. The present results reveal that a QSL description can extend beyond the lowest temperatures, offering an additional perspective in the search for such materials.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Oliver Hart ◽  
Yuan Wan ◽  
Claudio Castelnovo

AbstractRealistic model Hamiltonians for quantum spin liquids frequently exhibit a large separation of energy scales between their elementary excitations. At intermediate, experimentally relevant temperatures, some excitations are sparse and hop coherently, whereas others are thermally incoherent and dense. Here, we study the interplay of two such species of quasiparticle, dubbed spinons and visons, which are subject to nontrivial mutual statistics – one of the hallmarks of quantum spin liquid behaviour. Our results for $${{\mathbb{Z}}}_{2}$$ Z 2 quantum spin liquids show an intriguing feedback mechanism, akin to the Nagaoka effect, whereby spinons become localised on temperature-dependent patches of expelled visons. This phenomenon has important consequences for the thermodynamic and transport properties of the system, as well as for its response to quenches in temperature. We argue that these effects can be measured in experiments and may provide viable avenues for obtaining signatures of quantum spin liquid behaviour.


2021 ◽  
pp. 2000126
Author(s):  
Cheng Peng ◽  
Yi‐Fan Jiang ◽  
Dong‐Ning Sheng ◽  
Hong‐Chen Jiang

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Yan-Cheng Wang ◽  
Zheng Yan ◽  
Chenjie Wang ◽  
Yang Qi ◽  
Zi Yang Meng

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Ilia Khait ◽  
P. Peter Stavropoulos ◽  
Hae-Young Kee ◽  
Yong Baek Kim

Sign in / Sign up

Export Citation Format

Share Document