scholarly journals Pole-skipping of scalar and vector fields in hyperbolic space: conformal blocks and holography

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Yongjun Ahn ◽  
Viktor Jahnke ◽  
Hyun-Sik Jeong ◽  
Keun-Young Kim ◽  
Kyung-Sun Lee ◽  
...  

Abstract Motivated by the recent connection between pole-skipping phenomena of two point functions and four point out-of-time-order correlators (OTOCs), we study the pole structure of thermal two-point functions in d-dimensional conformal field theories (CFTs) in hyperbolic space. We derive the pole-skipping points of two-point functions of scalar and vector fields by three methods (one field theoretic and two holographic methods) and confirm that they agree. We show that the leading pole-skipping point of two point functions is related with the late time behavior of conformal blocks and shadow conformal blocks in four-point OTOCs.

2021 ◽  
Vol 36 (39) ◽  
Author(s):  
Yu Nakayama

The Gauß hypergeometric function shows a recursive structure which resembles those found in conformal blocks. We compare it with the recursive structure of the conformal block in boundary/crosscap conformal field theories that is obtained from the representation theory. We find that the pole structure perfectly agrees but the recursive structure in the Gauß hypergeometric function is slightly “off-shell”.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


1990 ◽  
Vol 05 (01) ◽  
pp. 211-222 ◽  
Author(s):  
H. ITOYAMA ◽  
A. SEVRIN

We explain, from the Knizhnik-Zamolodchikov equation, the coincidence of the braiding matrices of conformal field theories having current algebras with face Boltzmann weights (at infinite spectral parameter) of the corresponding generalized Toda system (GTS). A vertex-height correspondence is introduced in the WZW theory. Braiding matrices of coset models are found to factorize into those of the WZW theories and, as an example, we evaluate those of the Ising model.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
David Poland ◽  
Valentina Prilepina

Abstract We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar operators, reducing them to a linear combination of blocks with scalars exchanged. We additionally derive recursion relations for the conformal blocks which appear when one of the external operators in the 5-point function has spin 1 or 2. Our results allow us to formulate positivity constraints using 5-point functions which describe the expectation value of the energy operator in bilocal states created by two scalars.


2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Yan Gobeil ◽  
Alexander Maloney ◽  
Gim Seng Ng ◽  
Jie-qiang Wu

We study conformal blocks for thermal one-point-functions on the sphere in conformal field theories of general dimension. These thermal conformal blocks satisfy second-order Casimir differential equations and have integral representations related to AdS Witten diagrams. We give an analytic formula for the scalar conformal block in terms of generalized hypergeometric functions. As an application, we deduce an asymptotic formula for the three-point coefficients of primary operators in the limit where two of the operators are heavy.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hugo A. Camargo ◽  
Lucas Hackl ◽  
Michal P. Heller ◽  
Alexander Jahn ◽  
Tadashi Takayanagi ◽  
...  

2000 ◽  
Vol 15 (30) ◽  
pp. 4857-4870 ◽  
Author(s):  
D. C. CABRA ◽  
E. FRADKIN ◽  
G. L. ROSSINI ◽  
F. A. SCHAPOSNIK

We propose an effective Lagrangian for the low energy theory of the Pfaffian states of the fractional quantum Hall effect in the bulk in terms of non-Abelian Chern–Simons (CS) actions. Our approach exploits the connection between the topological Chern–Simons theory and chiral conformal field theories. This construction can be used to describe a large class of non-Abelian FQH states.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nishant Gupta ◽  
Nemani V. Suryanarayana

Abstract We construct classical theories for scalar fields in arbitrary Carroll spacetimes that are invariant under Carrollian diffeomorphisms and Weyl transformations. When the local symmetries are gauge fixed these theories become Carrollian conformal field theories. We show that generically there are at least two types of such theories: one in which only time derivatives of the fields appear and the other in which both space and time derivatives appear. A classification of such scalar field theories in three (and higher) dimensions up to two derivative order is provided. We show that only a special case of our theories arises in the ultra-relativistic limit of a covariant parent theory.


Sign in / Sign up

Export Citation Format

Share Document