scholarly journals Phenomenology of a fake Inert Doublet Model

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Damiano Anselmi ◽  
Kristjan Kannike ◽  
Carlo Marzo ◽  
Luca Marzola ◽  
Aurora Melis ◽  
...  

Abstract We introduce a new way of modeling the physics beyond the Standard Model by considering fake, strictly off-shell degrees of freedom: the fakeons. To demonstrate the approach and exemplify its reach, we re-analyze the phenomenology of the Inert Doublet Model under the assumption that the second doublet is a fakeon. Remarkably, the fake doublet avoids the most stringent Z-pole constraints regardless of the chosen mass scale, thereby allowing for the presence of new effects well below the electroweak scale. Furthermore, the absence of on-shell propagation prevents fakeons from inducing missing energy signatures in collider experiments. The distinguishing features of the model appear at the loop level, where fakeons modify the Higgs boson h → γγ decay width and the Higgs trilinear coupling. The running of Standard Model parameters proceeds as in the usual Inert Doublet Model case. Therefore, the fake doublet can also ensure the stability of the Standard Model vacuum. Our work shows that fakeons are a valid alternative to the usual tools of particle physics model building, with the potential to shape a new paradigm, where the significance of the existing experimental constraints towards new physics must necessarily be reconsidered.

2018 ◽  
Vol 33 (10n11) ◽  
pp. 1830007 ◽  
Author(s):  
Agnieszka Ilnicka ◽  
Tania Robens ◽  
Tim Stefaniak

We give a brief overview of beyond the Standard Model (BSM) theories with an extended scalar sector and their phenomenological status in the light of recent experimental results. We discuss the relevant theoretical and experimental constraints, and show their impact on the allowed parameter space of two specific models: the real scalar singlet extension of the Standard Model (SM) and the Inert Doublet Model. We emphasize the importance of the LHC measurements, both the direct searches for additional scalar bosons, as well as the precise measurements of properties of the Higgs boson of mass 125 GeV. We show the complementarity of these measurements to electroweak and dark matter observables.


1989 ◽  
Vol 04 (28) ◽  
pp. 2757-2766 ◽  
Author(s):  
THOMAS G. RIZZO

Although absent at the tree level in models with only doublet and singlet Higgs representations, the WZH coupling can be induced at the one-loop level. We examine the size of this induced coupling in the two Higgs doublet model due to fermion as well as Higgs/gauge boson loops. Such couplings could provide a new mechanism for charged Higgs production at colliders and are ‘backgrounds’ to new physics beyond the Standard Model. We find, however, that these couplings are very weak for all regions of the parameter space explored.


2018 ◽  
Vol 182 ◽  
pp. 02090
Author(s):  
Swagata Mukherjee

Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This report summarises several searches for lepton flavour violation with data collected by the CMS detector.


2021 ◽  
Vol 52 (4) ◽  
pp. 22-25
Author(s):  
N. Severijns

The Standard Model of Particle Physics is very successful but does not explain several experimental observations. Extensions of it, invoking new particles or phenomena, could overcome this. Experiments in different energy domains allow testing these extensions and searching for new particles. Here focus is on low-energy experiments with neutrons and radioactive nuclei.


2019 ◽  
Vol 219 ◽  
pp. 04003 ◽  
Author(s):  
Daniel Moser ◽  
Hartmut Abele ◽  
Joachim Bosina ◽  
Harald Fillunger ◽  
Torsten Soldner ◽  
...  

The beta decay of the free neutron provides several probes to test the Standard Model of particle physics as well as to search for extensions thereof. Hence, multiple experiments investigating the decay have already been performed, are under way or are being prepared. These measure the mean lifetime, angular correlation coefficients or various spectra of the charged decay products (proton and electron). NoMoS, the neutron decay products mo___mentum spectrometer, presents a novel method of momentum spectroscopy: it utilizes the R ×B drift effect to disperse charged particles dependent on their momentum in an uniformly curved magnetic field. This spectrometer is designed to precisely measure momentum spectra and angular correlation coefficients in free neutron beta decay to test the Standard Model and to search for new physics beyond. With NoMoS, we aim to measure inter alia the electron-antineutrino correlation coefficient a and the Fierz interference term b with an ultimate precision of Δa/a < 0.3% and Δb < 10−3 respectively. In this paper, we present the measurement principles, discuss measurement uncertainties and systematics, and give a status update.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Chris Hays ◽  
Andreas Helset ◽  
Adam Martin ◽  
Michael Trott

Abstract The Standard Model Effective Field Theory (SMEFT) theoretical framework is increasingly used to interpret particle physics measurements and constrain physics beyond the Standard Model. We investigate the truncation of the effective-operator expansion using the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension eight. Using this construction, we compare the exact solution to the expansion at $$ \mathcal{O} $$ O (v2/Λ2), partial $$ \mathcal{O} $$ O (v4/Λ4) using a subset of terms with dimension-6 operators, and full $$ \mathcal{O} $$ O (v4/Λ4), where v is the vacuum expectation value and Λ is the scale of new physics. This comparison is performed for general values of the coefficients, and for the specific model of a heavy U(1) gauge field kinetically mixed with the Standard Model. We additionally determine the input-parameter scheme dependence at all orders in v/Λ, and show that this dependence increases at higher orders in v/Λ.


2021 ◽  
Vol 81 (2) ◽  
Author(s):  
Stefan Bißmann ◽  
Gudrun Hiller ◽  
Clara Hormigos-Feliu ◽  
Daniel F. Litim

AbstractWe investigate collider signatures of standard model extensions featuring vector-like leptons and a flavorful scalar sector. Such a framework arises naturally within asymptotically safe model building, which tames the UV behavior of the standard model towards the Planck scale and beyond. We focus on values of Yukawa couplings and masses which allow to explain the present data on the muon and electron anomalous magnetic moments. Using a CMS search based on $$77.4 \, \text {fb}^{-1}$$ 77.4 fb - 1 at the $$\sqrt{s}=13$$ s = 13  TeV LHC we find that flavorful vector-like leptons are excluded for masses below around 300 GeV if they are singlets under $$SU(2)_L$$ S U ( 2 ) L , and around 800 GeV if they are doublets. Exploiting the flavor-violating-like decays of the scalars, we design novel null test observables based on opposite sign opposite flavor invariant masses. These multi-lepton distributions allow to signal new physics and to extract mass hierarchies in reach of near-future searches at the LHC and the HL-LHC.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 461
Author(s):  
António P. Morais ◽  
Roman Pasechnik ◽  
Werner Porod

The tremendous phenomenological success of the Standard Model (SM) suggests that its flavor structure and gauge interactions may not be arbitrary but should have a fundamental first-principle explanation. In this work, we explore how the basic distinctive properties of the SM dynamically emerge from a unified New Physics framework tying together both flavor physics and Grand Unified Theory (GUT) concepts. This framework is suggested by a novel anomaly-free supersymmetric chiral E6×SU(2)F×U(1)F GUT containing the SM. Among the most appealing emergent properties of this theory is the Higgs-matter unification with a highly-constrained massless chiral sector featuring two universal Yukawa couplings close to the GUT scale. At the electroweak scale, the minimal SM-like effective field theory limit of this GUT represents a specific flavored three-Higgs doublet model consistent with the observed large hierarchies in the quark mass spectra and mixing already at tree level.


2009 ◽  
Vol 24 (supp01) ◽  
pp. 3-7 ◽  
Author(s):  
Jian-Ping Ma

The Standard Model (SM) has been successful at describing all relevant experimental phenomena and, thus, has been generally accepted as the fundamental theory of elementary particle physics. Despite its success, the SM leaves many unanswered questions. These can be classified into two main categories: one for subjects related to possible new physics at unexplored energy scales and the other for nonperturbertive physics, mostly related to Quantum Chromodynamics…


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Delepine ◽  
Gaber Faisel ◽  
Carlos A. Ramirez

Abstract In this paper we investigate CP violation in charged decays of D meson. Particularly, we study the direct CP asymmetry of the Cabibbo favored non-leptonic $$D^+ \rightarrow {\bar{K}}^0 \pi ^+$$D+→K¯0π+ and the doubly Cabibbo-suppressed decay mode $$D^+ \rightarrow K^0 \pi ^+$$D+→K0π+ within standard model, two Higgs doublet model with generic Yukawa structure and left right symmetric models. In the standard model, we first derive the contributions from box and di-penguin diagrams contributing to their amplitudes which are relevant to the generation of the weak phases essential for non-vanishing direct CP violation. Then, we show that the generated phases are so tiny leading to null direct CP asymmetries of both decay modes. Regarding the two Higgs doublet model with generic Yukawa structure, after taking into account all constraints on the parameter space of the model, we show that the weak phases of the amplitudes can be enhanced compared to the standard model ones. However, the enhancement is still not enough to have sizable direct CP asymmetries. Finally, within left right symmetric models, we find that $$|A^{SM+LR}_{CP} (D^+ \rightarrow {\bar{K}}^0 \pi ^+)|\lesssim \mathcal {O}(10^{-3})$$|ACPSM+LR(D+→K¯0π+)|≲O(10-3) after respecting all relevant constraints on the parameter space of the model.


Sign in / Sign up

Export Citation Format

Share Document