scholarly journals Searches for new physics with free neutrons and radioactive atomic nuclei

2021 ◽  
Vol 52 (4) ◽  
pp. 22-25
Author(s):  
N. Severijns

The Standard Model of Particle Physics is very successful but does not explain several experimental observations. Extensions of it, invoking new particles or phenomena, could overcome this. Experiments in different energy domains allow testing these extensions and searching for new particles. Here focus is on low-energy experiments with neutrons and radioactive nuclei.

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


1997 ◽  
Vol 12 (04) ◽  
pp. 723-742 ◽  
Author(s):  
P. Bamert

We analyze LEP and SLC data from the 1995 Summer Conferences as well as from low energy neutral current experiments for signals of new physics. The reasons for doing this are twofold: first to explain the deviations from the Standard Model observed in Rb and Rc and second to constrain nonstandard contributions to couplings of the Z0 boson to all fermions and to the oblique parameters. We do so by comparing the data with the Standard Model as well as with a number of test hypotheses concerning the nature of the new physics. These include nonstandard [Formula: see text]-, [Formula: see text]- and [Formula: see text]-couplings as well as the couplings of the Z0 to fermions of the entire first, second and third generations and universal corrections to all up- and down-type quark couplings (as can arise see for example in Z' mixing models). We find that nonstandard [Formula: see text] couplings are both necessary and sufficient to explain the data and in particular the Rb anomaly. It is not possible to explain Rb, Rc and a value of the strong coupling constant consistent with low energy determinations invoking only nonstandard [Formula: see text]- and [Formula: see text]-couplings. To do so one has to have also new physics contributions to the [Formula: see text] or universal corrections to all [Formula: see text] couplings.


2018 ◽  
Vol 182 ◽  
pp. 02090
Author(s):  
Swagata Mukherjee

Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This report summarises several searches for lepton flavour violation with data collected by the CMS detector.


2001 ◽  
Vol 16 (07) ◽  
pp. 441-455 ◽  
Author(s):  
ZHENJUN XIAO ◽  
WENJUN LI ◽  
GONGRU LU ◽  
LIBO GUO

Using the low energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to B→π+π-, Kπ and Kη′ in the topcolor-assisted-technicolor (TC2) model, and compare the results with the available data. By using [Formula: see text] preferred by the CLEO data of B→π+π-decay, we find that the new physics enhancements to B→ Kη′ decays are significant in size, ~ 50% with respect to the standard model predictions, insensitive to the variations of input parameters and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B→ Kη′ decay rates.


1995 ◽  
Vol 10 (07) ◽  
pp. 605-613 ◽  
Author(s):  
M. SHIFMAN

The value of αs (Mz) emerging from the so-called global fits based mainly on the data at the Z peak (and assuming the standard model) is three standard deviations higher than the one stemming from the low-energy phenomenology. The corresponding value of Λ QCD is very large, ~500 MeV, and is incompatible with crucial features of QCD. If persists, the discrepancy should be interpreted as due to contributions to the Z-quark-antiquark vertices which go beyond the standard model.


2019 ◽  
Vol 218 ◽  
pp. 07002
Author(s):  
Eugene Chudakov

Jefferson Laboratory is finishing a major upgrade and has already started operations with the 12 GeV continuous electron beam. The main research direction is the study of the structure of hadrons, including a search for gluon excitations in the spectra of light mesons and baryons, and studies of multidimensional images of the nucleon. Studied of certain properties of atomic nuclei are also ongoing. There is also an active program of searching for effects beyond the Standard Model in parity-violating electron scattering, as well as a search for new particles.


2019 ◽  
Vol 219 ◽  
pp. 04003 ◽  
Author(s):  
Daniel Moser ◽  
Hartmut Abele ◽  
Joachim Bosina ◽  
Harald Fillunger ◽  
Torsten Soldner ◽  
...  

The beta decay of the free neutron provides several probes to test the Standard Model of particle physics as well as to search for extensions thereof. Hence, multiple experiments investigating the decay have already been performed, are under way or are being prepared. These measure the mean lifetime, angular correlation coefficients or various spectra of the charged decay products (proton and electron). NoMoS, the neutron decay products mo___mentum spectrometer, presents a novel method of momentum spectroscopy: it utilizes the R ×B drift effect to disperse charged particles dependent on their momentum in an uniformly curved magnetic field. This spectrometer is designed to precisely measure momentum spectra and angular correlation coefficients in free neutron beta decay to test the Standard Model and to search for new physics beyond. With NoMoS, we aim to measure inter alia the electron-antineutrino correlation coefficient a and the Fierz interference term b with an ultimate precision of Δa/a < 0.3% and Δb < 10−3 respectively. In this paper, we present the measurement principles, discuss measurement uncertainties and systematics, and give a status update.


2007 ◽  
Vol 22 (30) ◽  
pp. 5550-5560
Author(s):  
A. BETTINI

Astroparticle is a very wide, expanding, sector of Physics; this report covers only a fraction of it complementing the plenary reports of Y. Takahashi and K. Inoue. I will focus, in particular, on the experimental evidence of new physics, beyond the Standard Model. Astroparticle and accelerator experiments will give complementary tools in the search of new particles, like those of the dark matter, and new fundamental fields, like the inflaton.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Chris Hays ◽  
Andreas Helset ◽  
Adam Martin ◽  
Michael Trott

Abstract The Standard Model Effective Field Theory (SMEFT) theoretical framework is increasingly used to interpret particle physics measurements and constrain physics beyond the Standard Model. We investigate the truncation of the effective-operator expansion using the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension eight. Using this construction, we compare the exact solution to the expansion at $$ \mathcal{O} $$ O (v2/Λ2), partial $$ \mathcal{O} $$ O (v4/Λ4) using a subset of terms with dimension-6 operators, and full $$ \mathcal{O} $$ O (v4/Λ4), where v is the vacuum expectation value and Λ is the scale of new physics. This comparison is performed for general values of the coefficients, and for the specific model of a heavy U(1) gauge field kinetically mixed with the Standard Model. We additionally determine the input-parameter scheme dependence at all orders in v/Λ, and show that this dependence increases at higher orders in v/Λ.


Sign in / Sign up

Export Citation Format

Share Document