scholarly journals Exact SMEFT formulation and expansion to $$ \mathcal{O} $$(v4/Λ4)

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Chris Hays ◽  
Andreas Helset ◽  
Adam Martin ◽  
Michael Trott

Abstract The Standard Model Effective Field Theory (SMEFT) theoretical framework is increasingly used to interpret particle physics measurements and constrain physics beyond the Standard Model. We investigate the truncation of the effective-operator expansion using the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension eight. Using this construction, we compare the exact solution to the expansion at $$ \mathcal{O} $$ O (v2/Λ2), partial $$ \mathcal{O} $$ O (v4/Λ4) using a subset of terms with dimension-6 operators, and full $$ \mathcal{O} $$ O (v4/Λ4), where v is the vacuum expectation value and Λ is the scale of new physics. This comparison is performed for general values of the coefficients, and for the specific model of a heavy U(1) gauge field kinetically mixed with the Standard Model. We additionally determine the input-parameter scheme dependence at all orders in v/Λ, and show that this dependence increases at higher orders in v/Λ.

2019 ◽  
Vol 17 (1, spec.issue) ◽  
pp. 89-96
Author(s):  
Lampros Trifyllis

Starting from the Standard Model (SM) of elementary particle physics, we assume that new physics effects can be encoded in higher-dimensional operators added in the SM Lagrangian. The resulting theory, the SM Effective Field Theory (SMEFT), is then used for high-accuracy phenomenological studies. Through this paper, the di-photon decay of the Higgs boson is used as a sample of a concrete calculation in the SMEFT framework.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Upalaparna Banerjee ◽  
Joydeep Chakrabortty ◽  
Suraj Prakash ◽  
Shakeel Ur Rahaman

AbstractThe dynamics of the subatomic fundamental particles, represented by quantum fields, and their interactions are determined uniquely by the assigned transformation properties, i.e., the quantum numbers associated with the underlying symmetry of the model under consideration. These fields constitute a finite number of group invariant operators which are assembled to build a polynomial, known as the Lagrangian of that particular model. The order of the polynomial is determined by the mass dimension. In this paper, we have introduced an automated $${\texttt {Mathematica}}^{\tiny \textregistered }$$ Mathematica ® package, GrIP, that computes the complete set of operators that form a basis at each such order for a model containing any number of fields transforming under connected compact groups. The spacetime symmetry is restricted to the Lorentz group. The first part of the paper is dedicated to formulating the algorithm of GrIP. In this context, the detailed and explicit construction of the characters of different representations corresponding to connected compact groups and respective Haar measures have been discussed in terms of the coordinates of their respective maximal torus. In the second part, we have documented the user manual of GrIP that captures the generic features of the main program and guides to prepare the input file. We have attached a sub-program CHaar to compute characters and Haar measures for $$SU(N), SO(2N), SO(2N+1), Sp(2N)$$ S U ( N ) , S O ( 2 N ) , S O ( 2 N + 1 ) , S p ( 2 N ) . This program works very efficiently to find out the higher mass (non-supersymmetric) and canonical (supersymmetric) dimensional operators relevant to the effective field theory (EFT). We have demonstrated the working principles with two examples: the standard model (SM) and the minimal supersymmetric standard model (MSSM). We have further highlighted important features of GrIP, e.g., identification of effective operators leading to specific rare processes linked with the violation of baryon and lepton numbers, using several beyond standard model (BSM) scenarios. We have also tabulated a complete set of dimension-6 operators for each such model. Some of the operators possess rich flavour structures which are discussed in detail. This work paves the way towards BSM-EFT.


2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2019 ◽  
Vol 34 (38) ◽  
pp. 2050065
Author(s):  
Gabriel Facini ◽  
Kyrylo Merkotan ◽  
Matthias Schott ◽  
Alexander Sydorenko

Fiducial production cross-section measurements of Standard Model processes, in principle, provide constraints on new physics scenarios via a comparison of the predicted Standard Model cross-section and the observed cross-section. This approach received significant attention in recent years, both from direct constraints on specific models and the interpretation of measurements in the view of effective field theories. A generic problem in the reinterpretation of Standard Model measurements is the corrections application of to data to account for detector effects. These corrections inherently assume the Standard Model to be valid, thus implying a model bias of the final result. In this work, we study the size of this bias by studying several new physics models and fiducial phase–space regions. The studies are based on fast detector simulations of a generic multi-purpose detector at the Large Hadron Collider. We conclude that the model bias in the associated reinterpretations is negligible only in specific cases, however, typically on the same level as systematic uncertainties of the available measurements.


2018 ◽  
Vol 182 ◽  
pp. 02090
Author(s):  
Swagata Mukherjee

Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This report summarises several searches for lepton flavour violation with data collected by the CMS detector.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Rebeca Beltrán ◽  
Giovanna Cottin ◽  
Juan Carlos Helo ◽  
Martin Hirsch ◽  
Arsenii Titov ◽  
...  

Abstract Interest in searches for heavy neutral leptons (HNLs) at the LHC has increased considerably in the past few years. In the minimal scenario, HNLs are produced and decay via their mixing with active neutrinos in the Standard Model (SM) spectrum. However, many SM extensions with HNLs have been discussed in the literature, which sometimes change expectations for LHC sensitivities drastically. In the NRSMEFT, one extends the SM effective field theory with operators including SM singlet fermions, which allows to study HNL phenomenology in a “model independent” way. In this paper, we study the sensitivity of ATLAS to HNLs in the NRSMEFT for four-fermion operators with a single HNL. These operators might dominate both production and decay of HNLs, and we find that new physics scales in excess of 20 TeV could be probed at the high-luminosity LHC.


2021 ◽  
Vol 52 (4) ◽  
pp. 22-25
Author(s):  
N. Severijns

The Standard Model of Particle Physics is very successful but does not explain several experimental observations. Extensions of it, invoking new particles or phenomena, could overcome this. Experiments in different energy domains allow testing these extensions and searching for new particles. Here focus is on low-energy experiments with neutrons and radioactive nuclei.


Author(s):  
Junji Hisano

It is now certain that dark matter exists in the Universe. However, we do not know its nature, nor are there dark matter candidates in the standard model of particle physics or astronomy However, weakly interacting massive particles (WIMPs) in models beyond the standard model are one of the leading candidates available to provide explanation. The dark matter direct detection experiments, in which the nuclei recoiled by WIMPs are sought, are one of the methods to elucidate the nature of dark matter. This chapter introduces an effective field theory (EFT) approach in order to evaluate the nucleon–WIMP elastic scattering cross section.


2019 ◽  
Vol 219 ◽  
pp. 04003 ◽  
Author(s):  
Daniel Moser ◽  
Hartmut Abele ◽  
Joachim Bosina ◽  
Harald Fillunger ◽  
Torsten Soldner ◽  
...  

The beta decay of the free neutron provides several probes to test the Standard Model of particle physics as well as to search for extensions thereof. Hence, multiple experiments investigating the decay have already been performed, are under way or are being prepared. These measure the mean lifetime, angular correlation coefficients or various spectra of the charged decay products (proton and electron). NoMoS, the neutron decay products mo___mentum spectrometer, presents a novel method of momentum spectroscopy: it utilizes the R ×B drift effect to disperse charged particles dependent on their momentum in an uniformly curved magnetic field. This spectrometer is designed to precisely measure momentum spectra and angular correlation coefficients in free neutron beta decay to test the Standard Model and to search for new physics beyond. With NoMoS, we aim to measure inter alia the electron-antineutrino correlation coefficient a and the Fierz interference term b with an ultimate precision of Δa/a < 0.3% and Δb < 10−3 respectively. In this paper, we present the measurement principles, discuss measurement uncertainties and systematics, and give a status update.


Sign in / Sign up

Export Citation Format

Share Document