scholarly journals Black hole singularities across phase transitions

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Yan Liu ◽  
Hong-Da Lyu ◽  
Avinash Raju

Abstract We study the behavior of black hole singularities across the Hawking-Page phase transitions, uncovering possible connections between the physics inside and outside the horizon. We focus on the case of spacelike singularities in Einstein-scalar theory which are of the Kasner form. We find that the Kasner exponents are continuous and non-differentiable during the second order phase transitions, while discontinuous in the first order phase transitions. We give some arguments on the universality of this behavior. We also discuss possible observables in the dual field theory which encode the Kasner exponents.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Marieke Postma ◽  
Graham White

Abstract To obtain a first order phase transition requires large new physics corrections to the Standard Model (SM) Higgs potential. This implies that the scale of new physics is relatively low, raising the question whether an effective field theory (EFT) description can be used to analyse the phase transition in a (nearly) model-independent way. We show analytically and numerically that first order phase transitions in perturbative extensions of the SM cannot be described by the SM-EFT. The exception are Higgs-singlet extension with tree-level matching; but even in this case the SM-EFT can only capture part of the full parameter space, and if truncated at dim-6 operators, the description is at most qualitative. We also comment on the applicability of EFT techniques to dark sector phase transitions.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shao-Wen Wei ◽  
Yu-Xiao Liu ◽  
Chun-E. Fu ◽  
Hai-Tao Li

We study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. We find that the Weinhold curvature gives the first-order phase transition atN=1, whereNis a parameter of the plane symmetry black hole while the Ruppeiner one shows first-order phase transition points for arbitraryN≠1. Considering the Legendre invariant proposed by Quevedo et al., we obtain a unified geometry metric, which contains the information of the second-order phase transition. So, the first-order and second-order phase transitions can be both reproduced from the geometry curvatures. The geometry is also found to be curved, and the scalar curvature goes to negative infinity at the Davie phase transition points beyond semiclassical approximation.


2016 ◽  
Vol 17 (2) ◽  
pp. 193-197
Author(s):  
O.G. Medvedovs’ka ◽  
G.K. Chepurnykh ◽  
T.O. Fedorenko ◽  
S.V. Sokolov

On the example of first-order phase transitions in orthoferrites under the influence of an external magnetic field is shown the effectiveness of the application of the Landau theory of phase transitions, commonly used in second-order phase transitions. This is especially important when used Hamiltonian is a function of many variables.


2012 ◽  
Vol 190 ◽  
pp. 687-690
Author(s):  
A.K. Murtazaev ◽  
A.B. Babaev

The phase transitions and critical phenomena in three-dimensional (3D) site-diluted 3-and 4-state Potts models is investigated by Monte-Carlo method based on the highly efficient Wolff algorithm. The systems with linear sizesL=20-44 at spin concentrationsp=1.00, 0.95, 0.90, 0.80, 0.70, 0.65 are explored. The second-order phase transition is shown to occur in the three-dimensional 3-state Potts model with nonmagnetic impurities. In the 4-state Potts model there are observed first-order phase transitions in weakly diluted state, when the model is strongly diluted the first-order phase transitions change to the second-order one. On the basis of the finite-size scaling theory static critical exponents of specific heatα, susceptibilityγ, magnetizationβ, and exponent of correlation radiusνfor the systems under study are calculated.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Meng-Sen Ma ◽  
Yan-Song Liu

We study the thermodynamic properties and critical behaviors of the topological charged black hole in AdS space under the consideration of the generalized uncertainty principle (GUP). It is found that only in the spherical horizon case there are Van der Waals-like first-order phase transitions and reentrant phase transitions. From the equation of state we find that the GUP-corrected black hole can have one, two, and three apparent critical points under different conditions. However, it is verified by the Gibbs free energy that in either case there is at most one physical critical point.


Sign in / Sign up

Export Citation Format

Share Document