A Second-Order Phase Transition as a Limit of the First-Order Phase Transitions –Coherent Anomalies and Critical Phenomena in the Potts Models–

1988 ◽  
Vol 57 (12) ◽  
pp. 4114-4125 ◽  
Author(s):  
Makoto Katori
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiao-Xiong Zeng ◽  
Li-Fang Li

From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordström-AdS black hole is probed by the two-point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes that the black hole undergoes a Hawking-Page phase transition, a first-order phase transition, and a second-order phase transition successively before it reaches a stable phase. In addition, for these probes, we find that the equal area law for the first-order phase transition is valid always and the critical exponent of the heat capacity for the second-order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.


2009 ◽  
Vol 24 (08n09) ◽  
pp. 1541-1544
Author(s):  
ARIEL MÉGEVAND

I discuss the gravitational radiation produced in a first-order phase transition due to the turbulence that is caused by bubble expansion. I compare the cases of deflagration and detonation bubbles.


2016 ◽  
Vol 845 ◽  
pp. 166-169 ◽  
Author(s):  
Dmitry A. Kuzmin ◽  
Igor V. Bychkov ◽  
Ivan Yu. Biryukov ◽  
Alexander P. Kamantsev ◽  
Victor V. Koledov ◽  
...  

We present common 1D model of first order phase transition based on coupled solution of order parameters evolution and heat transfer equations. Such a model may be used for simulation of phase transitions in multiferroics or magnetostructural phase transitions, for example. First order phase transition process has been described by Landau-Khalatnikov-like equation with the thermodynamic potential of 2-3-4 and 2-4-6 types.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shao-Wen Wei ◽  
Yu-Xiao Liu ◽  
Chun-E. Fu ◽  
Hai-Tao Li

We study the properties and thermodynamic stability of the plane symmetry black hole from the viewpoint of geometry. We find that the Weinhold curvature gives the first-order phase transition atN=1, whereNis a parameter of the plane symmetry black hole while the Ruppeiner one shows first-order phase transition points for arbitraryN≠1. Considering the Legendre invariant proposed by Quevedo et al., we obtain a unified geometry metric, which contains the information of the second-order phase transition. So, the first-order and second-order phase transitions can be both reproduced from the geometry curvatures. The geometry is also found to be curved, and the scalar curvature goes to negative infinity at the Davie phase transition points beyond semiclassical approximation.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Jakub Mielczarek

This article addresses the issue of possible gravitational phase transitions in the early universe. We suggest that a second-order phase transition observed in the Causal Dynamical Triangulations approach to quantum gravity may have a cosmological relevance. The phase transition interpolates between a nongeometric crumpled phase of gravity and an extended phase with classical properties. Transition of this kind has been postulated earlier in the context of geometrogenesis in the Quantum Graphity approach to quantum gravity. We show that critical behavior may also be associated with a signature change in Loop Quantum Cosmology, which occurs as a result of quantum deformation of the hypersurface deformation algebra. In the considered cases, classical space-time originates at the critical point associated with a second-order phase transition. Relation between the gravitational phase transitions and the corresponding change of symmetry is underlined.


Author(s):  
Dan Guo ◽  
Luis M. Moreno-Ramírez ◽  
Carlos Romero-Muñiz ◽  
Yikun Zhang ◽  
Jia-Yan Law ◽  
...  

AbstractRare-earth (RE) rich intermetallics crystallizing in orthorhombic Ho6Co2Ga-type crystal structure exhibit peculiar magnetic properties that are not widely reported for their magnetic ordering, order of magnetic phase transition, and related magnetocaloric behavior. By tuning the type of RE element in RE6Co2Ga (RE = Ho, Dy or Gd) compounds, metamagnetic anti-to-paramagnetic (AF to PM) phase transitions could be tuned to ferro-to-paramagnetic (FM to PM) phase transitions. Furthermore, the FM ground state for Gd6Co2Ga is confirmed by density functional theory calculations in addition to experimental observations. The field dependence magnetocaloric and Banerjee’s criteria demonstrate that Ho6Co2Ga and Dy6Co2Ga undergo a first-order phase transition in addition to a second-order phase transition, whereas only the latter is observed for Gd6Co2Ga. The two extreme alloys of the series, Ho6Co2Ga and Gd6Co2Ga, show maximum isothermal entropy change (∣ΔS iso max (5 T)∣) of 10.1 and 9.1 J kg−1K−1 at 26 and 75 K, close to H2 and N2 liquefaction, respectively. This outstanding magnetocaloric effect performance makes the RE6Co2Ga series of potential for cryogenic magnetic refrigeration applications.


Sign in / Sign up

Export Citation Format

Share Document