scholarly journals Phase Transitions of GUP-Corrected Charged AdS Black Hole

2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Meng-Sen Ma ◽  
Yan-Song Liu

We study the thermodynamic properties and critical behaviors of the topological charged black hole in AdS space under the consideration of the generalized uncertainty principle (GUP). It is found that only in the spherical horizon case there are Van der Waals-like first-order phase transitions and reentrant phase transitions. From the equation of state we find that the GUP-corrected black hole can have one, two, and three apparent critical points under different conditions. However, it is verified by the Gibbs free energy that in either case there is at most one physical critical point.

Author(s):  
E Maghsoodi ◽  
H Hassanabadi ◽  
Won Sang Chung

Abstract We investigate the effect of the generalized uncertainty principle on the thermodynamic properties of the topological charged black hole in anti-de Sitter space within the framework of doubly special relativity. Our study is based on a heuristic analysis of a particle which is captured by the black hole. We obtain some thermodynamic properties of the black hole including temperature, entropy, and heat capacity in the spherical horizon case.


2019 ◽  
Vol 35 (07) ◽  
pp. 2050029
Author(s):  
Amritendu Haldar ◽  
Ritabrata Biswas

In this paper, we consider the five-dimensional Myers–Perry black hole solution to study the thermodynamic properties and compare this with the thermodynamic behaviors of generalized uncertainty principle (GUP)-induced Myers–Perry solution. We study the existence of remnant quantities. Stability criteria are studied by observing the natures of temperature growth and sign changes in specific heat. We try to locate phase transitions. Moreover, we study the corresponding physical range for the GUP parameter and try to justify the value with the data predicted by different observations.


Physica B+C ◽  
1984 ◽  
Vol 124 (2) ◽  
pp. 251-254 ◽  
Author(s):  
Nicolás García ◽  
Juan José Sáenz ◽  
Nicolás Cabrera

2019 ◽  
Vol 35 (05) ◽  
pp. 2050010
Author(s):  
Zhong-Wen Feng ◽  
De-Ling Tang ◽  
Dan-Dan Feng ◽  
Shu-Zheng Yang

In this work, we construct a new kind of rainbow functions, which has generalized uncertainty principle parameter. Then, we investigate modified thermodynamic quantities and phase transition of rainbow Schwarzschild black hole by employing this new kind of rainbow functions. Our results demonstrate that the rainbow gravity and generalized uncertainty principle have a great effect on the picture of Hawking radiation. They prevent black holes from total evaporation and cause a remnant. In addition, after analyzing the modified local thermodynamic quantities, we find that the effect of rainbow gravity and the generalized uncertainty principle lead to one first-order phase transition, two second-order phase transitions and two Hawking–Page-type phase transitions in the thermodynamic system of rainbow Schwarzschild black hole.


2018 ◽  
Vol 27 (11) ◽  
pp. 1830008 ◽  
Author(s):  
V. Dexheimer ◽  
L. T. T. Soethe ◽  
J. Roark ◽  
R. O. Gomes ◽  
S. O. Kepler ◽  
...  

In this paper, we review the most common descriptions for the first-order phase transition to deconfined quark matter in the core of neutron stars. We also present a new description of these phase transitions in the core of proto-neutron stars, in which more constraints are enforced so as to include trapped neutrinos. Finally, we calculate the emission of gravitational waves associated with deconfinement phase transitions, discuss the possibility of their detection, and how this would provide information about the equation of state of dense matter.


2016 ◽  
Vol 30 (21) ◽  
pp. 1650149
Author(s):  
Dimo I. Uzunov

Fluctuation effects at first-order phase transitions driven by changes of other-than-temperature factors like pressure, concentration or external fields are investigated by perturbation theory. The results for the fluctuation contributions to the order parameter, the internal energy and the free energy at pre-transitional states near spinodal points of first-order phase transitions are presented to the first-nonvanishing order of the expansion parameters of the theory.


Sign in / Sign up

Export Citation Format

Share Document