scholarly journals AFFLECK–DINE LEPTOGENESIS IN THE RADIATIVE NEUTRINO MASS MODEL

2011 ◽  
Vol 26 (06) ◽  
pp. 995-1009 ◽  
Author(s):  
H. HIGASHI ◽  
T. ISHIMA ◽  
D. SUEMATSU

Radiative neutrino mass models have interesting features, which make it possible to relate neutrino masses to the existence of dark matter. However, the explanation of the baryon number asymmetry in the universe seems to be generally difficult as long as we suppose leptogenesis based on the decay of thermal right-handed neutrinos. Since right-handed neutrinos are assumed to have masses of O(1) TeV in these models, they are too small to generate the sufficient lepton number asymmetry. Here we consider Affleck–Dine leptogenesis in a radiative neutrino mass model by using a famous flat direction LHu as an alternative possibility. The constraint on the reheating temperature could be weaker than the ordinary models. The model explains all the origin of the neutrino masses, the dark matter, and also the baryon number asymmetry in the universe.

2015 ◽  
Vol 93 (12) ◽  
pp. 1561-1565
Author(s):  
Ng. K. Francis

We construct the neutrino mass models with non-vanishing θ13 and estimate the baryon asymmetry of the universe and subsequently derive the constraints on the inflaton mass and the reheating temperature after inflation. The great discovery of this decade, the detection of Higgs boson of mass 126 GeV and nonzero θ13, makes leptogenesis all the more exciting. Besides, the neutrino mass model is compatible with inflaton mass 1010–1013 GeV corresponding to reheating temperature TR ∼ 105–107 GeV to overcome the gravitino constraint in supersymmetry and big bang nucleosynthesis. When Daya Bay data θ13 ≈ 9° is included in the model, τ predominates over e and μ contributions, which are indeed a good sign. It is shown that neutrino mass models for a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.


2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.


2011 ◽  
Vol 26 (15) ◽  
pp. 2461-2485 ◽  
Author(s):  
Y. FARZAN

With the start of the LHC, interest in electroweak scale models for the neutrino mass has grown. In this paper, we review two specific models that simultaneously explain neutrino masses and provide a suitable DM candidate. We discuss the implications of these models for various observations and experiments including the LHC, Lepton Flavor Violating (LFV) rare decays, direct and indirect dark matter searches and kaon decay.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Shao-Ping Li ◽  
Xin-Qiang Li ◽  
Xin-Shuai Yan ◽  
Ya-Dong Yang

AbstractWe present a freeze-in realization of the Dirac neutrinogenesis in which the decaying particle that generates the lepton-number asymmetry is in thermal equilibrium. As the right-handed Dirac neutrinos are produced non-thermally, the lepton-number asymmetry is accumulated and partially converted to the baryon-number asymmetry via the rapid sphaleron transitions. The necessary CP-violating condition can be fulfilled by a purely thermal kinetic phase from the wavefunction correction in the lepton-doublet sector, which has been neglected in most leptogenesis-based setup. Furthermore, this condition necessitates a preferred flavor basis in which both the charged-lepton and neutrino Yukawa matrices are non-diagonal. To protect such a proper Yukawa structure from the basis transformations in flavor space prior to the electroweak gauge symmetry breaking, we can resort to a plethora of model buildings aimed at deciphering the non-trivial Yukawa structures. Interestingly, based on the well-known tri-bimaximal mixing with a minimal correction from the charged-lepton or neutrino sector, we find that a simultaneous explanation of the baryon-number asymmetry in the Universe and the low-energy neutrino oscillation observables can be attributed to the mixing angle and the CP-violating phase introduced in the minimal correction.


Author(s):  
Chitta Ranjan Das ◽  
Katri Huitu ◽  
Zhanibek Kurmanaliyev ◽  
Bakytbek Mauyey ◽  
Timo Kärkkäinen

The crucial phenomenological and experimental predictions for new physics are outlined, where the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, leptonic CP-violation) could find their solutions. The analogies between the cosmological neutrino mass scale from the early universe data and laboratory probes are discussed and the search for new physics and phenomena.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Juan Herrero-García ◽  
Michael A. Schmidt

AbstractWe propose a model-independent framework to classify and study neutrino mass models and their phenomenology. The idea is to introduce one particle beyond the Standard Model which couples to leptons and carries lepton number together with an operator which violates lepton number by two units and contains this particle. This allows to study processes which do not violate lepton number, while still working with an effective field theory. The contribution to neutrino masses translates to a robust upper bound on the mass of the new particle. We compare it to the stronger but less robust upper bound from Higgs naturalness and discuss several lower bounds. Our framework allows to classify neutrino mass models in just 20 categories, further reduced to 14 once nucleon decay limits are taken into account, and possibly to 9 if also Higgs naturalness considerations and direct searches are considered.


2010 ◽  
Vol 25 (25) ◽  
pp. 2111-2120 ◽  
Author(s):  
YASAMAN FARZAN

A minimalistic scenario is developed to explain dark matter and tiny but nonzero neutrino masses. A new scalar called SLIM plays the role of the dark matter. Neutrinos achieve Majorana mass through a one-loop diagram. This scenario can be realized for both real and complex SLIM. Simultaneously explaining the neutrino mass and dark matter abundance constrains the scenario. In particular for real SLIM, an upper bound of a few MeV on the masses of the new particles and a lower bound on their coupling is obtained which make the scenario testable. The low energy scenario can be embedded within various SU (2)× U (1) symmetric models. A specific example is introduced and its phenomenological consequences are discussed.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
E. Fernandez-Martinez ◽  
M. Pierre ◽  
E. Pinsard ◽  
S. Rosauro-Alcaraz

AbstractWe consider the inverse Seesaw scenario for neutrino masses with the approximate Lepton number symmetry broken dynamically by a scalar with Lepton number two. We show that the Majoron associated to the spontaneous symmetry breaking can alleviate the Hubble tension through its contribution to $$\Delta N_\text {eff}$$ Δ N eff and late decays to neutrinos. Among the additional fermionic states required for realizing the inverse Seesaw mechanism, sterile neutrinos at the keV-MeV scale can account for all the dark matter component of the Universe if produced via freeze-in from the decays of heavier degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document