scholarly journals Baryogenesis and dark matter in U(1) extensions

2017 ◽  
Vol 32 (15) ◽  
pp. 1740005 ◽  
Author(s):  
Wan-Zhe Feng ◽  
Pran Nath

A brief review is given of some recent works where baryogenesis and dark matter have a common origin within the U(1) extensions of the Standard Model (SM) and of the minimal supersymmetric Standard Model (MSSM). The models considered generate the desired baryon asymmetry and the dark matter to baryon ratio. In one model, all of the fundamental interactions do not violate lepton number, and the total [Formula: see text] in the Universe vanishes. In addition, one may also generate a normal hierarchy of neutrino masses and mixings in conformity with the current data. Specifically, one can accommodate [Formula: see text] consistent with the data from Daya Bay reactor neutrino experiment.

2018 ◽  
Vol 33 (31) ◽  
pp. 1844017
Author(s):  
Heinrich Päs

The abundances of baryons and leptons are not only closely related to each other and to the generation of neutrino masses but may also be linked to the dark matter in the Universe. In this paper we review how a consistent physics beyond the Standard Model framework for cosmology and neutrino masses could arise by studying these interrelations.


2012 ◽  
Vol 27 (21) ◽  
pp. 1250117 ◽  
Author(s):  
FAYYAZUDDIN

A model for electroweak unification of quarks and leptons, in a gauge group SUC(3) × SU(4) × UX(1) is constructed. The model requires, three generations of quarks and leptons which are replicas (mirror) of the standard quarks and leptons. The gauge group SU(4) × UX(1) is broken in such a way so as to reproduce standard model and to generate heavy masses for the vector bosons [Formula: see text], the leptoquarks and mirror fermions. It is shown lower limit on mass scale of mirror fermions is [Formula: see text], E- being the lightest mirror fermion coupled to Z boson. As the universe expands, the heavy matter is decoupled at an early stage of expansion and may be a source of dark matter. Leptoquarks in the model connect the standard model and mirror fermions. Baryon genesis in our universe implies antibaryon genesis in mirror universe.


LEP data constrain severely many proposed extensions of the Standard Model. These include: massive neutrinos, which are now largely excluded as candidates for the dark matter of the Universe; supersymmetric particles, the lightest of which would still constitute detectable dark matter; technicolour, of which many favoured versions are now excluded by precision electroweak measurements; and grand unified theories, of which LEP data favour supersymmetric versions.


2008 ◽  
Vol 23 (10) ◽  
pp. 721-725 ◽  
Author(s):  
ERNEST MA

Adding a second scalar doublet (η+, η0) and three neutral singlet fermions N1, 2, 3 to the Standard Model of particle interactions with a new Z2 symmetry, it has been shown that [Formula: see text] or [Formula: see text] is a good dark-matter candidate and seesaw neutrino masses are generated radiatively. A supersymmetric U(1) gauge extension of this new idea is proposed, which enforces the usual R-parity of the Minimal Supersymmetric Standard Model, and allows this new Z2 symmetry to emerge as a discrete remnant.


2018 ◽  
Vol 33 (02) ◽  
pp. 1830003 ◽  
Author(s):  
John Ellis

The most important discovery in particle physics in recent years was that of the Higgs boson, and much effort is continuing to measure its properties, which agree obstinately with the Standard Model, so far. However, there are many reasons to expect physics beyond the Standard Model, motivated by the stability of the electroweak vacuum, the existence of dark matter and the origin of the visible matter in the Universe, neutrino physics, the hierarchy of mass scales in physics, cosmological inflation and the need for a quantum theory for gravity. Most of these issues are being addressed by the experiments during Run 2 of the LHC, and supersymmetry could help resolve many of them. In addition to the prospects for the LHC, I also review briefly those for direct searches for dark matter and possible future colliders.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850024 ◽  
Author(s):  
Ernest Ma ◽  
Diego Restrepo ◽  
Óscar Zapata

The well-known leptonic U(1) symmetry of the Standard Model (SM) of quarks and leptons is extended to include a number of new fermions and scalars. The resulting theory has an invisible QCD axion (thereby solving the strong CP problem), a candidate for weak-scale dark matter (DM), as well as radiative neutrino masses. A possible key connection is a color-triplet scalar, which may be produced and detected at the Large Hadron Collider.


2015 ◽  
Vol 30 (04n05) ◽  
pp. 1530001 ◽  
Author(s):  
S. M. Bilenky ◽  
C. Giunti

In the Standard Model the total lepton number is conserved. Thus, neutrinoless double-β decay, in which the total lepton number is violated by two units, is a probe of physics beyond the Standard Model. In this review we consider the basic mechanism of neutrinoless double-β decay induced by light Majorana neutrino masses. After a brief summary of the present status of our knowledge of neutrino masses and mixing and an introduction to the seesaw mechanism for the generation of light Majorana neutrino masses, in this review we discuss the theory and phenomenology of neutrinoless double-β decay. We present the basic elements of the theory of neutrinoless double-β decay, our view of the present status of the challenging problem of the calculation of the nuclear matrix element of the process and a summary of the experimental results.


2004 ◽  
Vol 13 (07) ◽  
pp. 1335-1344
Author(s):  
JOSÉ A. de FREITAS PACHECO ◽  
S. PEIRANI

Evidences for the existence of dark matter in the Universe are briefly reviewed and, in particular, the nature of the galactic halo. Possible candidates, point-like or not, issued from extensions of the Standard Model or Supersymmetric theories are examined. Finally, direct and indirect searches for dark matter particles are summarized.


2011 ◽  
Vol 26 (06) ◽  
pp. 995-1009 ◽  
Author(s):  
H. HIGASHI ◽  
T. ISHIMA ◽  
D. SUEMATSU

Radiative neutrino mass models have interesting features, which make it possible to relate neutrino masses to the existence of dark matter. However, the explanation of the baryon number asymmetry in the universe seems to be generally difficult as long as we suppose leptogenesis based on the decay of thermal right-handed neutrinos. Since right-handed neutrinos are assumed to have masses of O(1) TeV in these models, they are too small to generate the sufficient lepton number asymmetry. Here we consider Affleck–Dine leptogenesis in a radiative neutrino mass model by using a famous flat direction LHu as an alternative possibility. The constraint on the reheating temperature could be weaker than the ordinary models. The model explains all the origin of the neutrino masses, the dark matter, and also the baryon number asymmetry in the universe.


Sign in / Sign up

Export Citation Format

Share Document