scholarly journals Quantum BTZ black hole

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Roberto Emparan ◽  
Antonia Micol Frassino ◽  
Benson Way

Abstract We study a holographic construction of quantum rotating BTZ black holes that incorporates the exact backreaction from strongly coupled quantum conformal fields. It is based on an exact four-dimensional solution for a black hole localized on a brane in AdS4, first discussed some years ago but never fully investigated in this manner. Besides quantum CFT effects and their backreaction, we also investigate the role of higher-curvature corrections in the effective three-dimensional theory. We obtain the quantum-corrected geometry and the renormalized stress tensor. We show that the quantum black hole entropy, which includes the entanglement of the fields outside the horizon, satisfies the first law of thermodynamics exactly, even in the presence of backreaction and with higher-curvature corrections, while the Bekenstein-Hawking-Wald entropy does not. This result, which involves a rather non-trivial bulk calculation, shows the consistency of the holographic interpretation of braneworlds. We compare our renormalized stress tensor to results derived for free conformal fields, and for a previous holographic construction without backreaction effects, which is shown to be a limit of the solutions in this article.

1999 ◽  
Vol 14 (05) ◽  
pp. 349-358 ◽  
Author(s):  
V. SUNEETA ◽  
R. K. KAUL ◽  
T. R. GOVINDARAJAN

The entropy of the BTZ black hole is computed in the Ponzano–Regge formulation of three-dimensional lattice gravity. It is seen that the correct semiclassical behavior of entropy is reproduced by states which correspond to all possible triangulations of the Euclidean black hole. The maximum contribution to the entropy comes from states at the horizon.


2012 ◽  
Vol 44 (11) ◽  
pp. 2865-2872 ◽  
Author(s):  
Hui-Ling Li ◽  
Rong Lin ◽  
Li-Ying Cheng

1995 ◽  
Vol 52 (8) ◽  
pp. 4527-4539 ◽  
Author(s):  
J. L. F. Barbón ◽  
R. Emparan

2019 ◽  
Vol 34 (28) ◽  
pp. 1950168 ◽  
Author(s):  
M. Ashrafi

Using modular bootstrap we show the lightest primary fields of a unitary compact two-dimensional conformal field theory (with [Formula: see text], [Formula: see text]) has a conformal weight [Formula: see text]. This implies that the upper bound on the dimension of the lightest primary fields depends on their spin. In particular if the set of lightest primary fields includes extremal or near extremal states whose spin to dimension ratio [Formula: see text], the corresponding dimension is [Formula: see text]. From AdS/CFT correspondence, we obtain an upper bound on the spectrum of black hole in three-dimensional gravity. Our results show that if the first primary fields have large spin, the corresponding three-dimensional gravity has extremal or near extremal BTZ black hole.


2012 ◽  
Vol 2012 (2) ◽  
Author(s):  
Francisco Correa ◽  
Cristián Martínez ◽  
Ricardo Troncoso

2003 ◽  
Vol 18 (12) ◽  
pp. 2205-2209 ◽  
Author(s):  
F. L. Williams

For the three-dimensional BTZ black hole we consider a Selberg type zeta function. We indicate how special values of its logarithm correspond to certain thermodynamic quantities associated with the black hole.


1995 ◽  
Vol 10 (36) ◽  
pp. 2775-2782 ◽  
Author(s):  
ICHIRO ODA

In this letter we consider an N-brane description of an (N+3)-dimensional black hole horizon. First of all, we start by examining in more detail a previous work where a string theory is used in describing the dynamics of the event horizon of a four-dimensional black hole. This is an attempt to understand the black hole thermodynamics by an effective two-dimensional field theory of the event horizon of a black hole. Then we consider a particle model defined on one-dimensional Euclidean line in a three-dimensional black hole as a target spacetime metric. By solving the field equations we find a “worldline instanton” which connects the past event horizon with the future one. This solution gives us the exact value of the Hawking temperature and to leading order the Bekenstein-Hawking formula of black hole entropy. We also show that this formalism is extensible to an arbitrary spacetime dimension. Finally we make a comment of many recent works of one-loop quantum correction to the black hole entropy.


2014 ◽  
Vol 24 (01) ◽  
pp. 1550001 ◽  
Author(s):  
Dharm Veer Singh

We study the quantum scalar field in the background of BTZ black hole and evaluate the entanglement entropy of the nonvacuum states. The entropy is proportional to the area of event horizon for the ground state, but the area law is violated in the case of nonvacuum states (first excited state and mixed states) and the corrections scale as power law.


Sign in / Sign up

Export Citation Format

Share Document