scholarly journals Gravitational shock waves and scattering amplitudes

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Andrea Cristofoli

Abstract We study gravitational shock waves using scattering amplitude techniques. After first reviewing the derivation in General Relativity as an ultrarelativistic boost of a Schwarzschild solution, we provide an alternative derivation by exploiting a novel relation between scattering amplitudes and solutions to Einstein field equations. We prove that gravitational shock waves arise from the classical part of a three point function with two massless scalars and a graviton. The region where radiation is localized has a distributional profile and it is now recovered in a natural way, thus bypassing the introduction of singular coordinate transformations as used in General Relativity. The computation is easily generalized to arbitrary dimensions and we show how the exactness of the classical solution follows from the absence of classical contributions at higher loops. A classical double copy between gravitational and electromagnetic shock waves is also provided and for a spinning source, using the exponential form of three point amplitudes, we infer a remarkable relation between gravitational shock waves and spinning ones, also known as gyratons. Using this property, we infer a family of exact solutions describing gravitational shock waves with spin. We then compute the phase shift of a particle in a background of shock waves finding agreement with an earlier computation by Amati, Ciafaloni and Veneziano for particles in the high energy limit. Applied to a gyraton, it provides a result for the scattering angle to all orders in spin.

Author(s):  
Steven Carlip

This work is a short textbook on general relativity and gravitation, aimed at readers with a broad range of interests in physics, from cosmology to gravitational radiation to high energy physics to condensed matter theory. It is an introductory text, but it has also been written as a jumping-off point for readers who plan to study more specialized topics. As a textbook, it is designed to be usable in a one-quarter course (about 25 hours of instruction), and should be suitable for both graduate students and advanced undergraduates. The pedagogical approach is “physics first”: readers move very quickly to the calculation of observational predictions, and only return to the mathematical foundations after the physics is established. The book is mathematically correct—even nonspecialists need to know some differential geometry to be able to read papers—but informal. In addition to the “standard” topics covered by most introductory textbooks, it contains short introductions to more advanced topics: for instance, why field equations are second order, how to treat gravitational energy, what is required for a Hamiltonian formulation of general relativity. A concluding chapter discusses directions for further study, from mathematical relativity to experimental tests to quantum gravity.


Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Simon Caron-Huot ◽  
Einan Gardi ◽  
Joscha Reichel ◽  
Leonardo Vernazza

Abstract We study two-to-two parton scattering amplitudes in the high-energy limit of perturbative QCD by iteratively solving the BFKL equation. This allows us to predict the imaginary part of the amplitude to leading-logarithmic order for arbitrary t-channel colour exchange. The corrections we compute correspond to ladder diagrams with any number of rungs formed between two Reggeized gluons. Our approach exploits a separation of the two-Reggeon wavefunction, performed directly in momentum space, between a soft region and a generic (hard) region. The former component of the wavefunction leads to infrared divergences in the amplitude and is therefore computed in dimensional regularization; the latter is computed directly in two transverse dimensions and is expressed in terms of single-valued harmonic polylogarithms of uniform weight. By combining the two we determine exactly both infrared-divergent and finite contributions to the two-to-two scattering amplitude order-by-order in perturbation theory. We study the result numerically to 13 loops and find that finite corrections to the amplitude have a finite radius of convergence which depends on the colour representation of the t-channel exchange.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Selomit Ramírez-Uribe ◽  
Roger J. Hernández-Pinto ◽  
Germán Rodrigo ◽  
German F. R. Sborlini ◽  
William J. Torres Bobadilla

Abstract The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the N4MLT universal topology. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the N4MLT universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.


Author(s):  
Andreas Boenke

The intention of this paper is to point out a remarkable hitherto unknown effect of General Relativity. Starting from fundamental physical principles and phenomena arising from General Relativity, it is demonstrated by a simple Gedankenexperiment that a gravitational lens enhances not only the light intensity of a background object but also its gravitational field strength by the same factor. Thus, multiple images generated by a gravitational lens are not just optical illusions, they also have a gravitational effect at the location of the observer! The "Gravitationally Lensed Gravitation" (GLG) may help to better understand the rotation curves of galaxies since it leads to an enhancement of the gravitational interactions of the stars. Furthermore, it is revealed that besides a redshift of the light of far distant objects, the cosmic expansion also causes a corresponding weakening of their gravitational effects. The explanations are presented entirely without metric representation and tensor formalism. Instead, the behavior of light is used to indicate the effect of spacetime curvature. The gravitation is described by the field strength which is identical to the free fall acceleration. The new results thus obtained provide a reference for future numerical calculations based on the Einstein field equations.


2019 ◽  
pp. 52-58
Author(s):  
Steven Carlip

The Einstein field equations are the fundamental equations of general relativity. After a brief qualitative discussion of geodesic deviation and Newtonian gravity, this chapter derives the field equations from the Einstein-Hilbert action. The chapter contains a derivation of Noether’s theorem and the consequent conservation laws, and a brief discussion of generalizations of the Einstein-Hilbert action.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Prasenjit Paul ◽  
Rikpratik Sengupta

It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two phenomenological models based on the former, more conventional approach within the context of general relativity. The phenomenological models in this paper consider a Λ term firstly a function of a¨/a and secondly a function of ρ, where a and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic interpretation, we explain the recent observations with a dynamical cosmological constant.


This paper shows how the ten conserved quantities, recently discovered by E. T. Newman and R. Penrose by essentially geometrical techniques, arise in a direct solution of the Einstein field equations. For static fields it is shown that five of the conserved quantities vanish while the remaining five are expressed in terms of the multipole moments of the source distribution.


2017 ◽  
Vol 13 (4) ◽  
pp. 4895-4900
Author(s):  
D.S. Wamalwa ◽  
Carringtone Kinyanjui

A reformulation of the Schwarzschild solution of the linearized Einstein field equations in post-Riemannian Finsler spacetime is derived. The solution is constructed in three stages: the exterior solution, the event-horizon solution and the interior solution. It is shown that the exterior solution is asymptotically similar to Newtonian gravity at large distances implying that Newtonian gravity is a low energy approximation of the solution. Application of Eddington-Finklestein coordinates is shown to reproduce the results obtained from standard general relativity at the event horizon. Further application of Kruskal-Szekeres coordinates reveals that the interior solution contains maximally extensible geodesics.


Sign in / Sign up

Export Citation Format

Share Document