scholarly journals A search for charged lepton flavor violation in the Mu2e experiment

2020 ◽  
Vol 35 (19) ◽  
pp. 2030007
Author(s):  
Manolis Kargiantoulakis

The Mu2e experiment will search for the neutrino-less conversion of a muon into an electron in the field of an aluminum nucleus. An observation would be the first signal of charged lepton flavor violation and de facto evidence for new physics beyond the Standard Model. The clean signature of the conversion process offers an opportunity for a powerful search: Mu2e will probe four orders of magnitude beyond current limits, with real discovery potential over a wide range of well-motivated new physics models. This goal requires an integrated system of solenoids that will create the most intense muon beam in the world, and suppression of all possible background sources. The Mu2e components are currently being constructed, with the experiment planned to begin operations in the Fermilab Muon Campus within the next few years.

2021 ◽  
Vol 13 (3) ◽  
pp. 1057-1074
Author(s):  
P. Verma ◽  
- Vivekanand ◽  
K. Chaturvedi

The search for lepton flavor violation in charged lepton decays is a highly sensitive tool to look for physics beyond the Standard Model. Among the possible processes, µ-decays are considered to have the largest discovery potential in most of the standard model extensions. Many searches have been performed in the past, but no evidence has been found so far. In this paper, we have reviewed the current theoretical and experimental status of the field of muon to electron decay and its potential to search for new physics beyond the Standard Model. Future prospects of experiments for further progress in this field are also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Meng Lu ◽  
Andrew Michael Levin ◽  
Congqiao Li ◽  
Antonios Agapitos ◽  
Qiang Li ◽  
...  

An electron-muon collider with an asymmetric collision profile targeting multi-ab-1 integrated luminosity is proposed. This novel collider, operating at collision energies of, e.g., 20–200 GeV, 50–1000 GeV, and 100–3000 GeV, would be able to probe charged lepton flavor violation and measure Higgs boson properties precisely. The collision of an electron and muon beam leads to less physics background compared with either an electron-electron or a muon-muon collider, since electron-muon interactions proceed mostly through higher-order vector boson fusion and vector boson scattering processes. The asymmetric collision profile results in collision products that are boosted towards the electron beam side, which can be exploited to reduce beam-induced background from the muon beam to a large extent. With this in mind, one can imagine a lepton collider complex, starting from colliding order 10 GeV electron and muon beams for the first time in history and to probe charged lepton flavor violation, then to be upgraded to a collider with 50-100 GeV electron and 1-3 TeV muon beams to measure Higgs properties and search for new physics and finally to be transformed to a TeV-scale muon-muon collider. The cost should vary from order 100 million to a few billion dollars, corresponding to different stages, which make the funding situation more practical.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Vincenzo Cirigliano ◽  
Kaori Fuyuto ◽  
Christopher Lee ◽  
Emanuele Mereghetti ◽  
Bin Yan

Abstract We present a comprehensive analysis of the potential sensitivity of the Electron-Ion Collider (EIC) to charged lepton flavor violation (CLFV) in the channel ep→τX, within the model-independent framework of the Standard Model Effective Field Theory (SMEFT). We compute the relevant cross sections to leading order in QCD and electroweak corrections and perform simulations of signal and SM background events in various τ decay channels, suggesting simple cuts to enhance the associated estimated efficiencies. To assess the discovery potential of the EIC in τ-e transitions, we study the sensitivity of other probes of this physics across a broad range of energy scales, from pp→eτX at the Large Hadron Collider to decays of B mesons and τ leptons, such as τ→eγ, τ→eℓ+ℓ−, and crucially the hadronic modes τ→eY with Y∈π, K, ππ, Kπ, …. We find that electroweak dipole and four-fermion semi-leptonic operators involving light quarks are already strongly constrained by τ decays, while operators involving the c and b quarks present more promising discovery potential for the EIC. An analysis of three models of leptoquarks confirms the expectations based on the SMEFT results. We also identify future directions needed to maximize the reach of the EIC in CLFV searches: these include an optimization of the τ tagger in hadronic channels, an exploration of background suppression through tagging b and c jets in the final state, and a global fit by turning on all SMEFT couplings, which will likely reveal new discovery windows for the EIC.


2021 ◽  
Vol 81 (9) ◽  
Author(s):  
Tong Li ◽  
Michael A. Schmidt ◽  
Chang-Yuan Yao ◽  
Man Yuan

AbstractAny observation of charged lepton flavor violation (CLFV) implies the existence of new physics beyond the SM in charged lepton sector. CLFV interactions may also contribute to the muon magnetic moment and explain the discrepancy between the SM prediction and the recent muon $$g-2$$ g - 2 precision measurement at Fermilab. We consider the most general SM gauge invariant Lagrangian of $$\Delta L=0$$ Δ L = 0 bileptons with CLFV couplings and investigate the interplay of low-energy precision experiments and colliders in light of the muon magnetic moment anomaly. We go beyond previous work by demonstrating the sensitivity of the LHC, the MACE experiment, a proposed muonium-antimuonium conversion experiment, and a muon collider. Currently-available LHC data is already able to probe unexplored parameter space via the CLFV process $$pp\rightarrow \gamma ^*/Z^*\rightarrow \ell _1^\pm \ell _1^\pm \ell _2^\mp \ell _2^\mp $$ p p → γ ∗ / Z ∗ → ℓ 1 ± ℓ 1 ± ℓ 2 ∓ ℓ 2 ∓ .


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Fabio Bossi ◽  
Paolo Ciafaloni

Abstract Lepton Flavor Violating (LFV) processes are clear signals of physics beyond the Standard Model. We investigate the possibility of measuring this kind of processes at present and foreseeable future muon-electron colliders, taking into account present day bounds from existing experiments. As a model of new physics we consider a Z’ boson with a Ut(1) gauge symmetry and generic couplings. Processes that violate lepton flavor by two units seem to be particularly promising.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
K. Uno ◽  
K. Hayasaka ◽  
K. Inami ◽  
I. Adachi ◽  
...  

Abstract Charged lepton flavor violation is forbidden in the Standard Model but possible in several new physics scenarios. In many of these models, the radiative decays τ± → ℓ±γ (ℓ = e, μ) are predicted to have a sizeable probability, making them particularly interesting channels to search at various experiments. An updated search via τ± → ℓ±γ using full data of the Belle experiment, corresponding to an integrated luminosity of 988 fb−1, is reported for charged lepton flavor violation. No significant excess over background predictions from the Standard Model is observed, and the upper limits on the branching fractions, $$ \mathcal{B} $$ B (τ± → μ±γ) ≤ 4.2 × 10−8 and $$ \mathcal{B} $$ B (τ± → e±γ) ≤ 5.6 × 10−8, are set at 90% confidence level.


2005 ◽  
Vol 20 (14) ◽  
pp. 3033-3049
Author(s):  
GUSTAAF BROOIJMANS

Current experimental limits for new physics beyond the Standard Model and hints for deviations from Standard Model expectations will be reviewed, highlighting recent results. Possible signals that will be discussed include Higgs bosons, supersymmetric particles, large extra dimensions, new gauge bosons, dynamical symmetry breaking, muon g - 2, rare decays and lepton flavor violation. The discovery potential of the LHC and ILC will be presented, and the impact of discovery on answering fundamental questions of physics will be assessed.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Stefan Antusch ◽  
A. Hammad ◽  
Ahmed Rashed

Abstract We investigate the sensitivity of electron-proton (ep) colliders for charged lepton flavor violation (cLFV) in an effective theory approach, considering a general effective Lagrangian for the conversion of an electron into a muon or a tau via the effective coupling to a neutral gauge boson or a neutral scalar field. For the photon, the Z boson and the Higgs particle of the Standard Model, we present the sensitivities of the LHeC for the coefficients of the effective operators, calculated from an analysis at the reconstructed level. As an example model where such flavor changing neutral current (FCNC) operators are generated at loop level, we consider the extension of the Standard Model by sterile neutrinos. We show that the LHeC could already probe the LFV conversion of an electron into a muon beyond the current experimental bounds, and could reach more than an order of magnitude higher sensitivity than the present limits for LFV conversion of an electron into a tau. We discuss that the high sensitivities are possible because the converted charged lepton is dominantly emitted in the backward direction, enabling an efficient separation of the signal from the background.


Sign in / Sign up

Export Citation Format

Share Document