scholarly journals Speeding up the spread of quantum information in chaotic systems

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Stefan Eccles ◽  
Willy Fischler ◽  
Tyler Guglielmo ◽  
Juan F. Pedraza ◽  
Sarah Racz

Abstract We explore the effect of introducing mild nonlocality into otherwise local, chaotic quantum systems, on the rate of information spreading and associated rates of entanglement generation and operator growth. We consider various forms of nonlocality, both in 1-dimensional spin chain models and in holographic gauge theories, comparing the phenomenology of each. Generically, increasing the level of nonlocality increases the rate of information spreading, but in lattice models we find instances where these rates are slightly suppressed.

2020 ◽  
Vol 102 (4) ◽  
Author(s):  
Josiah Couch ◽  
Stefan Eccles ◽  
Phuc Nguyen ◽  
Brian Swingle ◽  
Shenglong Xu

Science ◽  
2018 ◽  
Vol 362 (6414) ◽  
pp. 568-571 ◽  
Author(s):  
Andrea Blanco-Redondo ◽  
Bryn Bell ◽  
Dikla Oren ◽  
Benjamin J. Eggleton ◽  
Mordechai Segev

The robust generation and propagation of multiphoton quantum states are crucial for applications in quantum information, computing, and communications. Although photons are intrinsically well isolated from the thermal environment, scaling to large quantum optical devices is still limited by scattering loss and other errors arising from random fabrication imperfections. The recent discoveries regarding topological phases have introduced avenues to construct quantum systems that are protected against scattering and imperfections. We experimentally demonstrate topological protection of biphoton states, the building block for quantum information systems. We provide clear evidence of the robustness of the spatial features and the propagation constant of biphoton states generated within a nanophotonics lattice with nontrivial topology and propose a concrete path to build robust entangled states for quantum gates.


Author(s):  
Jesko Sirker

These notes are based on a series of three lectures given at the Les Houches summer school on ’Integrability in Atomic and Condensed Matter Physics’ in August 2018. They provide an introduction into the unusual transport properties of integrable models in the linear response regime focussing, in particular, on the spin-1/21/2 XXZ spin chain.


2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Dragi Karevski ◽  
Gunter Schütz

We prove that a recently derived correlation equality between conserved charges and their associated conserved currents for quantum systems far from equilibrium [O.A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016)], is valid under more general conditions than assumed so far. Similar correlation identities, which in generalized Gibbs ensembles give rise to a current symmetry somewhat reminiscent of the Onsager relations, turn out to hold also in the absence of translation invariance, for lattice models, and in any space dimension, and to imply a symmetry of the non-equilibrium linear response functions.


2003 ◽  
Vol 14 (05) ◽  
pp. 741-755 ◽  
Author(s):  
JAN BOUDA ◽  
VLADIMÍ R. BUŽEK

We study in detail the problem of encryption of quantum information. We present an attack on a private quantum channel (PQC) which applies when partial classical description of a ciphertext is known (the so-called known-ciphertext attack) and we show how this situation can be avoided. The quantum analogue of the known plaintext attack is also discussed. We determine how correlations between quantum systems can be encrypted and we conclude that two PQCs on the subsystems form a PQC on the whole composite system. Finally, some applications of the PQC are suggested and a security of a noisy channel is discussed.


2019 ◽  
Vol 177 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Haruki Watanabe

Abstract The Bloch theorem is a powerful theorem stating that the expectation value of the U(1) current operator averaged over the entire space vanishes in large quantum systems. The theorem applies to the ground state and to the thermal equilibrium at a finite temperature, irrespective of the details of the Hamiltonian as far as all terms in the Hamiltonian are finite ranged. In this work we present a simple yet rigorous proof for general lattice models. For large but finite systems, we find that both the discussion and the conclusion are sensitive to the boundary condition one assumes: under the periodic boundary condition, one can only prove that the current expectation value is inversely proportional to the linear dimension of the system, while the current expectation value completely vanishes before taking the thermodynamic limit when the open boundary condition is imposed. We also provide simple tight-binding models that clarify the limitation of the theorem in dimensions higher than one.


Author(s):  
Č. Burdík ◽  
A. P. Isaev ◽  
S. O. Krivonos ◽  
O. Navrátil

Sign in / Sign up

Export Citation Format

Share Document