scholarly journals Semi-classical analysis of the string theory cigar

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Daniel Louis Jafferis ◽  
Elliot Schneider

Abstract We study the semi-classical limit of the reflection coefficient for the SL(2, ℝ)k/U(1) CFT. For large k, the CFT describes a string in a Euclidean black hole of 2-dimensional dilaton-gravity, whose target space is a cigar with an asymptotically linear dilaton. This sigma-model description is weakly coupled in the large k limit, and we investigate the saddle-point expansion of the functional integral that computes the reflection coefficient. As in the semi-classical limit of Liouville CFT studied in [1], we find that one must complexify the functional integral and sum over complex saddles to reproduce the limit of the exact reflection coefficient. Unlike Liouville, the SL(2, ℝ)k/U(1) CFT admits bound states that manifest as poles of the reflection coefficient. To reproduce them in the semi-classical limit, we find that one must sum over configurations that hit the black hole singularity, but nevertheless contribute to the saddle-point expansion with finite action.

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


1982 ◽  
Vol 25 (5) ◽  
pp. 2467-2472 ◽  
Author(s):  
S. H. Patil

2018 ◽  
Author(s):  
Seyedeh Fatemeh Mirekhtiary ◽  
Akbar Abbasi

2016 ◽  
Vol 12 (S324) ◽  
pp. 273-278
Author(s):  
Robert Lasenby

AbstractBosonic fields around a spinning black hole can be amplified via ‘superradiance’, a wave analogue of the Penrose process, which extracts energy and momentum from the black hole. For hypothetical ultra-light bosons, with Compton wavelengths on ≳ km scales, such a process can lead to the exponential growth of gravitationally bound states around astrophysical Kerr black holes. If such particles exist, as predicted in many theories of beyond Standard Model physics, then these bosonic clouds give rise to a number of potentially-observable signals. Among the most promising are monochromatic gravitational radiation signals which could be detected at Advanced LIGO and future gravitational wave observatories.


2007 ◽  
Vol 22 (08n09) ◽  
pp. 1451-1588 ◽  
Author(s):  
MARY K. GAILLARD ◽  
BRENT D. NELSON

We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kähler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Binétruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed.


2013 ◽  
Vol 28 (27) ◽  
pp. 1350109 ◽  
Author(s):  
I. SAKALLI

In this study, we employ the scalar perturbations of the charged dilaton black hole (CDBH) found by Chan, Horne and Mann (CHM), and described with an action which emerges in the low-energy limit of the string theory. A CDBH is neither asymptotically flat (AF) nor non-asymptotically flat (NAF) spacetime. Depending on the value of its dilaton parameter a, it has both Schwarzschild and linear dilaton black hole (LDBH) limits. We compute the complex frequencies of the quasinormal modes (QNMs) of the CDBH by considering small perturbations around its horizon. By using the highly damped QNM in the process prescribed by Maggiore, we obtain the quantum entropy and area spectra of these black holes (BHs). Although the QNM frequencies are tuned by a, we show that the quantum spectra do not depend on a, and they are equally spaced. On the other hand, the obtained value of undetermined dimensionless constant ϵ is the double of Bekenstein's result. The possible reason of this discrepancy is also discussed.


2018 ◽  
Vol 191 ◽  
pp. 07004
Author(s):  
Maxim Fitkevich

We investigate black hole evaporation in a weakly coupled model of two-dimensional dilaton gravity paying a particular attention to the validity of the semiclassical mean-field approximation. Our model is obtained by adding a reflecting boundary to the celebrated RST model describing N gravitating massless scalar fields to one-loop level. The boundary cuts off the region of strong coupling. Although our model is explicitly weakly coupled, we find that the mean field approximation inevitably fails at the end of black hole evaporation. We propose an alternative semiclassical method aiming at direct calculation of S-matrix elements and illustrate it in a simple shell model.


Sign in / Sign up

Export Citation Format

Share Document