Signaling pathways between the plasma membrane and endoplasmic reticulum calcium stores

2000 ◽  
Vol 57 (8) ◽  
pp. 1272-1286 ◽  
Author(s):  
J. W. Putney Jr.* ◽  
C. M. Pedrosa Ribeiro
2008 ◽  
Vol 294 (6) ◽  
pp. F1279-F1286 ◽  
Author(s):  
Kimberly H. Weber ◽  
Eun Kyung Lee ◽  
Uma Basavanna ◽  
Sabina Lindley ◽  
Roy C. Ziegelstein ◽  
...  

We previously found that polycystin-1 accelerated the decay of ligand-activated cytoplasmic calcium transients through enhanced reuptake of calcium into the endoplasmic reticulum (ER; Hooper KM, Boletta A, Germino GG, Hu Q, Ziegelstein RC, Sutters M. Am J Physiol Renal Physiol 289: F521–F530, 2005). Calcium flux across the ER membrane is determined by the balance of active uptake and passive leak. In the present study, we show that polycystin-1 inhibited calcium leak across the ER membrane, an effect that would explain the capacity of this protein to accelerate clearance of calcium from the cytoplasm following a calcium release response. Calcium leak was detected by measurement of the accumulation of calcium in the cytoplasm following treatment with thapsigargin. Heterologous polycystin-1, stably expressed in Madin-Darby canine kidney cells, attenuated the thapsigargin-induced calcium peak with no effect on basal calcium stores, mitochondrial calcium uptake, or extrusion of calcium across the plasma membrane. The capacity of polycystin-1 to limit the rate of decay of ER luminal calcium following inhibition of the pump was shown indirectly using the calcium ionophore ionomycin, and directly by loading the ER with a low-affinity calcium indicator. We conclude that disruption of ER luminal calcium homeostasis may contribute to the cyst phenotype in autosomal dominant polycystic kidney disease.


1998 ◽  
Vol 5 ◽  
pp. 135
Author(s):  
V. Pinelis ◽  
D. Fajuk ◽  
L. Khaspekov ◽  
T. Storozhevykh ◽  
N. Vinskaya ◽  
...  

2003 ◽  
Vol 371 (3) ◽  
pp. 775-782 ◽  
Author(s):  
Thomas NEWTON ◽  
John P. J. BLACK ◽  
John BUTLER ◽  
Anthony G. LEE ◽  
John CHAD ◽  
...  

The location of sarco/endoplasmic-reticulum calcium ATPase (SERCA) retention/retrieval motifs in the sequence of the SERCA1 has been investigated by examining the subcellular location in COS-7 cells of enhanced-green-fluorescent-protein-tagged calcium-pump chimaeras. These chimaeras have been constructed from the fast-twitch SERCA1 and the plasma-membrane calcium ATPase PMCA3. The N-terminal, central and C-terminal segments of these calcium pumps were exchanged between SERCA1 and PMCA3. The segments exchanged correspond to residues 1–211, 212–711 and 712–994 of SERCA1, and residues 1–264, 265–788 and 789–1159 of PMCA3 respectively. Only chimaeras containing the N-terminal segment of SERCA1 were located in the endoplasmic reticulum (ER), whereas chimaeras containing the N-terminal segment from PMCA3 were able to escape from the ER and enter the endomembrane pathway en route for the plasma membrane. Co-localization of SERCA1 in COS-7 cells with the ER/Golgi-intermediate compartment marker ERGIC53 indicates that SERCA1 is maintained in the ER by a process of retrieval. These results indicate that the N-terminal region of SERCA1, containing transmembrane helices M1 and M2, contains an ER-retrieval signal.


2001 ◽  
Vol 358 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Isobel K. FRANKLIN ◽  
Robert A. WINZ ◽  
Michael J. HUBBARD

Dental enamel-forming cells face a major challenge to avoid the cytotoxic effects of excess calcium. We have characterized sarcoplasmic/endoplasmic reticulum calcium-ATPase pumps (SERCA) in rat enamel cells to address the proposal that non-mitochondrial calcium stores play a dominant role in transcellular calcium transport. A single major isoform, SERCA2b, was detected during the protein-secretory and calcium-transport stages of enamel formation using reverse-transcriptase PCR, cDNA cloning, Northern analysis and immunoblotting. Most importantly, SERCA2b exhibited a specific 3-fold up-regulation to high expression levels during calcium transport, as determined by quantitative immunoblotting and ATPase assays. Sensitivity of the calcium-dependent ATPase to thapsigargin and three other SERCA inhibitors was characterized. These findings indicate that enamel cells are well-equipped to sequester calcium in endoplasmic reticulum stores and so protect against calcium toxicity, associate SERCA with transcellular calcium transport for the first time, and establish SERCA2b as a molecular and pharmacological target for future investigations of calcium transcytosis. The observed physiological regulation in enamel cells contradicts the widespread perception that SERCA2b is restricted to general housekeeping duties.


2020 ◽  
Vol 117 (35) ◽  
pp. 21288-21298 ◽  
Author(s):  
Alexander Chernorudskiy ◽  
Ersilia Varone ◽  
Sara Francesca Colombo ◽  
Stefano Fumagalli ◽  
Alfredo Cagnotto ◽  
...  

The endoplasmic reticulum (ER) is the reservoir for calcium in cells. Luminal calcium levels are determined by calcium-sensing proteins that trigger calcium dynamics in response to calcium fluctuations. Here we report that Selenoprotein N (SEPN1) is a type II transmembrane protein that senses ER calcium fluctuations by binding this ion through a luminal EF-hand domain. In vitro and in vivo experiments show that via this domain, SEPN1 responds to diminished luminal calcium levels, dynamically changing its oligomeric state and enhancing its redox-dependent interaction with cellular partners, including the ER calcium pump sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA). Importantly, single amino acid substitutions in the EF-hand domain of SEPN1 identified as clinical variations are shown to impair its calcium-binding and calcium-dependent structural changes, suggesting a key role of the EF-hand domain in SEPN1 function. In conclusion, SEPN1 is a ER calcium sensor that responds to luminal calcium depletion, changing its oligomeric state and acting as a reductase to refill ER calcium stores.


Sign in / Sign up

Export Citation Format

Share Document