Evidence for collateral projections to the retrosplenial granular cortex and thalamic reticular nucleus from glutamate and/or aspartate-containing neurons of the anterior thalamic nuclei in the rat

1997 ◽  
Vol 116 (1) ◽  
pp. 63-72 ◽  
Author(s):  
A. Gonzalo-Ruiz ◽  
L. Morte ◽  
A. R. Lieberman
1993 ◽  
Vol 13 (4) ◽  
pp. 558-567 ◽  
Author(s):  
Douglas T. Ross ◽  
David I. Graham

Neurons in the portion of the human thalamic reticular nucleus (RT) associated with the prefrontal cortex and mediodorsal thalamic nuclei were found to be selectively vulnerable to ischemic neuronal damage following relatively short (≤5-min) duration cardiac arrest. In contrast, selective sparing of these RT neurons occurred in cases with longer (>10-min) duration of arrest that was sufficient to produce extensive ischemic neuronal damage throughout the cerebral cortex and thalamic relay nuclei. The selective degeneration of RT neurons appears to require the sustained activity of corticothalamic or thalamocortical projections to the RT following the ischemic insult. Loss of RT neurons associated with the frontal cortex and mediodorsal thalamus may be the biological basis of some types of persisting cognitive deficits in attentional processing experienced by patients following cardiac arrest, open heart surgery, or other forms of brief global cerebral ischemia.


2011 ◽  
Vol 106 (5) ◽  
pp. 2499-2505 ◽  
Author(s):  
Emily Petrus ◽  
Terence T. Anguh ◽  
Huy Pho ◽  
Angela Lee ◽  
Nicholas Gammon ◽  
...  

Layer 6 (L6) of primary sensory cortices is distinct from other layers in that it provides a major cortical input to primary sensory thalamic nuclei. L6 pyramidal neurons in the primary visual cortex (V1) send projections to the lateral geniculate nucleus (LGN), as well as to the thalamic reticular nucleus and higher order thalamic nuclei. Although L6 neurons are proposed to modulate the activity of thalamic relay neurons, how sensory experience regulates L6 neurons is largely unknown. Several days of visual deprivation homeostatically adjusts excitatory synapses in L4 and L2/3 of V1 depending on the developmental age. For instance, L4 exhibits an early critical period during which visual deprivation homeostatically scales up excitatory synaptic transmission. On the other hand, homeostatic changes in L2/3 excitatory synapses are delayed and persist into adulthood. In the present study we examined how visual deprivation affects excitatory synapses on L6 pyramidal neurons. We found that L6 pyramidal neurons homeostatically increase the strength of excitatory synapses following 2 days of dark exposure (DE), which was readily reversed by 1 day of light exposure. This effect was restricted to an early critical period, similar to that reported for L4 neurons. However, at a later developmental age, a longer duration of DE (1 wk) decreased the strength of excitatory synapses, which reversed to normal levels with light exposure. These changes are opposite to what is predicted from the homeostatic plasticity theory. Our results suggest that L6 neurons differentially adjust their excitatory synaptic strength to visual deprivation depending on the age of the animals.


2019 ◽  
Author(s):  
Gil Vantomme ◽  
Zita Rovó ◽  
Romain Cardis ◽  
Elidie Béard ◽  
Georgia Katsioudi ◽  
...  

SummaryTo navigate in space, an animal must refer to sensory cues to orient and move. Circuit and synaptic mechanisms that integrate cues with internal head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involved AMPA/NMDA-type glutamate receptors that initiated TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulated PreS/RSC-induced anterior thalamic firing dynamics, broadened the tuning of thalamic HD cells, and led to preferential use of allo-over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.


2011 ◽  
Vol 28 (5) ◽  
pp. 433-444
Author(s):  
THOMAS FITZGIBBON ◽  
NICK KIKUCHI

AbstractThe cingulate cortex (CG) and the adjacent region designated as the splenial visual area (SVA) project to areas of the extrageniculate thalamic system that are concerned with processing visual information. En route to the thalamus, they pass through the thalamic reticular nucleus (TRN), an important source of thalamic inhibition. We wished to determine whether SVA axon collaterals projected to the previously defined visual sector of the TRN or a separate projection zone and did this differ from the projection zone of CG. We iontophoretically injected different neuroanatomical tracers into several locations within CG/SVA and traced the labeled axons through the TRN. The CG and SVA have a projection zone that only partially overlaps the dorsorostral regions of the visuocortical projection zone; there was no evidence to suggest separate SVA and CG zones or tiers of label within the TRN. The projection formed only a weak topographic map in the TRN, which is largely defined in the rostrocaudal axis and is similar to that of the area 7 projection; both projections have a high degree of overlap in the dorsal TRN. We postulate that CG/SVA may be involved in the initiation of orientation behaviors via stimulation of thalamic nuclei and attentional mechanisms of the TRN.


2015 ◽  
Vol 113 (9) ◽  
pp. 3090-3097 ◽  
Author(s):  
Ying-Wan Lam ◽  
S. Murray Sherman

The thalamic reticular nucleus (TRN) is a thin layer of GABAergic cells lying rostral and lateral to the dorsal thalamus, and its projection to thalamic relay cells (i.e., the reticulothalamic pathway) strongly inhibits these cells. In an attempt to extend earlier studies of reticulothalamic connections to sensory thalamic nuclei, we used laser-scanning photostimulation to study the reticulothalamic projections to the main motor thalamic relays, the ventral anterior and lateral (VA and VL) nuclei, as well as to the nearby central lateral (CL) thalamic nucleus. VA/VL and the earlier studied somatosensory thalamic nuclei are considered “core” nuclei with topographic thalamocortical projections, whereas CL is thought to be a “matrix” nucleus with diffuse thalamocortical projections. We found that the TRN input footprints to VA/VL and CL are spatially localized and topographic and generally conform to the patterns established earlier for the TRN projections to sensory thalamic relays. These remarkable similarities suggest similar organization of reticulothalamic pathways and TRN regulation of thalamocortical communication for motor and sensory systems and perhaps also for core and matrix thalamus. Furthermore, we found that VA/VL and CL shared overlapping TRN input regions, suggesting that CL may also be involved in the relay of motor information.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojtaba Bandarabadi ◽  
Carolina Gutierrez Herrera ◽  
Thomas C. Gent ◽  
Claudio Bassetti ◽  
Kaspar Schindler ◽  
...  

Abstract Sleep spindle generation classically relies on an interplay between the thalamic reticular nucleus (TRN), thalamo-cortical (TC) relay cells and cortico-thalamic (CT) feedback during non-rapid eye movement (NREM) sleep. Spindles are hypothesized to stabilize sleep, gate sensory processing and consolidate memory. However, the contribution of non-sensory thalamic nuclei in spindle generation and the role of spindles in sleep-state regulation remain unclear. Using multisite thalamic and cortical LFP/unit recordings in freely behaving mice, we show that spike-field coupling within centromedial and anterodorsal (AD) thalamic nuclei is as strong as for TRN during detected spindles. We found that spindle rate significantly increases before the onset of rapid eye movement (REM) sleep, but not wakefulness. The latter observation is consistent with our finding that enhancing spontaneous activity of TRN cells or TRN-AD projections using optogenetics increase spindle rate and transitions to REM sleep. Together, our results extend the classical TRN-TC-CT spindle pathway to include non-sensory thalamic nuclei and implicate spindles in the onset of REM sleep.


Sign in / Sign up

Export Citation Format

Share Document