scholarly journals Bicomplex Quantum Mechanics: I. The Generalized Schrödinger Equation

2004 ◽  
Vol 14 (2) ◽  
pp. 231-248 ◽  
Author(s):  
D. Rochon ◽  
S. Tremblay
2018 ◽  
Vol 2018 ◽  
pp. 1-4 ◽  
Author(s):  
Slobodan Prvanović

The equation describing the change of the state of the quantum system with respect to energy is introduced within the framework of the self-adjoint operator of time in nonrelativistic quantum mechanics. In this proposal, the operator of time appears to be the generator of the change of the energy, while the operator of energy that is conjugate to the operator of time generates the time evolution. Two examples, one with discrete time and the other with continuous one, are given and the generalization of Schrödinger equation is proposed.


2018 ◽  
Vol 2 (2) ◽  
pp. 43-47
Author(s):  
A. Suparmi, C. Cari, Ina Nurhidayati

Abstrak – Persamaan Schrödinger adalah salah satu topik penelitian yang yang paling sering diteliti dalam mekanika kuantum. Pada jurnal ini persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Fungsi gelombang dan spektrum energi yang dihasilkan menunjukkan kharakteristik atau tingkah laku dari partikel sub atom. Dengan menggunakan metode pendekatan hipergeometri, diperoleh solusi analitis untuk bagian radial persamaan Schrödinger berbasis panjang minimal diaplikasikan untuk potensial Coulomb Termodifikasi. Hasil yang diperoleh menunjukkan terjadi peningkatan energi yang sebanding dengan meningkatnya parameter panjang minimal dan parameter potensial Coulomb Termodifikasi. Kata kunci: persamaan Schrödinger, panjang minimal, fungsi gelombang, energi, potensial Coulomb Termodifikasi Abstract – The Schrödinger equation is the most popular topic research at quantum mechanics. The  Schrödinger equation based on the concept of minimal length formalism has been obtained for modified Coulomb potential. The wave function and energy spectra were used to describe the characteristic of sub-atomic particle. By using hypergeometry method, we obtained the approximate analytical solutions of the radial Schrödinger equation based on the concept of minimal length formalism for the modified Coulomb potential. The wave function and energy spectra was solved. The result showed that the value of energy increased by the increasing both of minimal length parameter and the potential parameter. Key words: Schrödinger equation, minimal length formalism (MLF), wave function, energy spectra, Modified Coulomb potential


2020 ◽  
Author(s):  
Daniel A. Fleisch

Quantum mechanics is a hugely important topic in science and engineering, but many students struggle to understand the abstract mathematical techniques used to solve the Schrödinger equation and to analyze the resulting wave functions. Retaining the popular approach used in Fleisch's other Student's Guides, this friendly resource uses plain language to provide detailed explanations of the fundamental concepts and mathematical techniques underlying the Schrödinger equation in quantum mechanics. It addresses in a clear and intuitive way the problems students find most troublesome. Each chapter includes several homework problems with fully worked solutions. A companion website hosts additional resources, including a helpful glossary, Matlab code for creating key simulations, revision quizzes and a series of videos in which the author explains the most important concepts from each section of the book.


2018 ◽  
Vol 4 (1) ◽  
pp. 47-55
Author(s):  
Timothy Brian Huber

The harmonic oscillator is a quantum mechanical system that represents one of the most basic potentials. In order to understand the behavior of a particle within this system, the time-independent Schrödinger equation was solved; in other words, its eigenfunctions and eigenvalues were found. The first goal of this study was to construct a family of single parameter potentials and corresponding eigenfunctions with a spectrum similar to that of the harmonic oscillator. This task was achieved by means of supersymmetric quantum mechanics, which utilizes an intertwining operator that relates a known Hamiltonian with another whose potential is to be built. Secondly, a generalization of the technique was used to work with the time-dependent Schrödinger equation to construct new potentials and corresponding solutions.


Author(s):  
Enayatolah Yazdankish

The generalized Woods–Saxon potential plus repulsive Coulomb interaction is considered in this work. The supersymmetry quantum mechanics method is used to get the energy spectrum of Schrodinger equation and also the Nikiforov–Uvarov approach is employed to solve analytically the Schrodinger equation in the framework of quantum mechanics. The potentials with centrifugal term include both exponential and radial terms, hence, the Pekeris approximation is considered to approximate the radial terms. By using the step-by-step Nikiforov–Uvarov method, the energy eigenvalue and wave function are obtained analytically. After that, the spectrum of energy is obtained by the supersymmetry quantum mechanics method. The energy eigenvalues obtained from each method are the same. Then in special cases, the results are compared with former result and a full agreement is observed. In the [Formula: see text]-state, the standard Woods–Saxon potential has no bound state, but with Coulomb repulsive interaction, it may have bound state for zero angular momentum.


The interaction representation has recently been introduced into the quantum theory of fields by Tomonaga and Schwinger. Applications of the theory to interacting meson-photon fields have led to apparent difficulties in determining invariant interaction Hamiltonians. Another troublesome feature is the necessity of verifying the integrability conditions of the so-called generalized Schrödinger equation. In the present paper the theory of the interaction representation is presented from a different point of view. It is shown that if two field operators with the same transformation character satisfy two different field equations, there is a unique unitary transformation connecting the field variables on any space-like surface given such a correspondence on one given space-like surface. A differential equation for determining this unique unitary transformation is found which is the analogue of Tomonaga’s generalized Schrödinger equation. This gives directly and simply an invariant interaction Hamiltonian and renders unnecessary the explicit verification of the integrability of the Schrödinger equation, since this is known to have a unique solution. To illustrate the simplification introduced by the present theory, the interaction Hamiltonian for the interacting scalar meson-photon fields is calculated. The result is the same as that obtained by Kanesawa & Tomonaga, but it is obtained by a straightforward calculation without the need to add terms to make the Hamiltonian an invariant.


Sign in / Sign up

Export Citation Format

Share Document