A New Recurrence Relation and Related Determinantal form for Binomial Type Polynomial Sequences

2016 ◽  
Vol 13 (6) ◽  
pp. 4001-4017 ◽  
Author(s):  
Francesco Aldo Costabile ◽  
Elisabetta Longo
2002 ◽  
Vol 6 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Vladimir V. Kisil

2009 ◽  
Vol 2009 ◽  
pp. 1-21 ◽  
Author(s):  
Tian-Xiao He ◽  
Peter J.-S. Shiue

Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Sheng-liang Yang ◽  
Sai-nan Zheng

In this paper, using the production matrix of a Riordan array, we obtain a recurrence relation for polynomial sequence associated with the Riordan array, and we also show that the general term for the sequence can be expressed as the characteristic polynomial of the principal submatrix of the production matrix. As applications, a unified determinant expression for the four kinds of Chebyshev polynomials is given.


ISRN Algebra ◽  
2011 ◽  
Vol 2011 ◽  
pp. 1-18 ◽  
Author(s):  
Tian-Xiao He ◽  
Peter J.-S. Shiue

Here, we present a connection between a sequence of polynomials generated by a linear recurrence relation of order 2 and sequences of the generalized Gegenbauer-Humbert polynomials. Many new and known transfer formulas between non-Gegenbauer-Humbert polynomials and generalized Gegenbauer-Humbert polynomials are given. The applications of the relationship to the construction of identities of polynomial sequences defined by linear recurrence relations are also discussed.


2014 ◽  
Vol 96 (110) ◽  
pp. 67-83 ◽  
Author(s):  
Francesco Costabile ◽  
Elisabetta Longo

A systematic exposition of Sheffer polynomial sequences via determinantal form is given. A general linear interpolation problem related to Sheffer sequences is considered. It generalizes many known cases of linear interpolation. Numerical examples and conclusions close the paper.


10.37236/3702 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Jonathan Schneider

In this paper, we show that the solution to a large class of "tiling'' problems is given by a polynomial sequence of binomial type. More specifically, we show that the number of ways to place a fixed set of polyominos on an $n\times n$ toroidal chessboard such that no two polyominos overlap is eventually a polynomial in $n$, and that certain sets of these polynomials satisfy binomial-type recurrences. We exhibit generalizations of this theorem to higher dimensions and other lattices. Finally, we apply the techniques developed in this paper to resolve an open question about the structure of coefficients of chromatic polynomials of certain grid graphs (namely that they also satisfy a binomial-type recurrence).


Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


Sign in / Sign up

Export Citation Format

Share Document