scholarly journals Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases

Author(s):  
Zilin Deng ◽  
Yingying Zhao ◽  
Zhiyuan Ma ◽  
Minglin Zhang ◽  
Hu Wang ◽  
...  

AbstractThe incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid–base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl−/HCO3− exchangers, Cl− channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.

1994 ◽  
Vol 267 (4) ◽  
pp. G536-G545 ◽  
Author(s):  
K. Guttu ◽  
K. Grong ◽  
K. Svanes ◽  
J. E. Gronbech

To study the influence of acid base balance on gastric mucosal repair, NH4Cl or NaHCO3 was given intravenously to anesthetized cats after mucosal damage induced by intraluminal 2 M NaCl. Saline at pH 5 or 1 was perfused via an oral tube through the stomach lumen and evacuated via a pyloric tube to a chamber with pH and PCO2 electrodes. Luminal bicarbonate (HCO3-) was markedly increased early after damage in both acidotic and alkalotic animals. In alkalotic animals mucosal blood flow increased about twofold in response to mucosal damage, whereas the early hyperemic response was either completely attenuated or blunted in acidotic animals. HCO3- release was correlated to availability of HCO3- by blood in alkalotic animals with luminal pH 5. Alkalotic animals showed improved repair compared with acidotic animals, and mucosal restitution was correlated to availability of HCO3- by blood. We conclude that luminal leakage of HCO3- or plasma after mucosal damage depends on availability by blood and consumption of HCO3- within the mucosa and that blood borne HCO3- has a major influence on gastric mucosal repair.


1987 ◽  
Vol 6 (3) ◽  
pp. 115-117
Author(s):  
M. J. Pitout ◽  
G. T. Willemse

The regulation of the acid-base balance is generally regarded as a well entrenched area. However, a number of confusing views on pH-homeostasis, especially with reference to the relationship between the kidney and the ammonium buffer system, appear regularly in textbooks. One reason is that the correct stoichiometry of acid-base regulation is not mentioned. Recently the rote of the liver in pH regulation by controlling the bicarbonate concentration through urea synthesis is proposed. In this paper the role of the liver and kidneys as a team is discussed.


1989 ◽  
Vol 257 (2) ◽  
pp. F170-F176 ◽  
Author(s):  
J. C. Brown ◽  
R. K. Packer ◽  
M. A. Knepper

Bicarbonate is formed when organic anions are oxidized systemically. Therefore, changes in organic anion excretion can affect systemic acid-base balance. To assess the role of organic anions in urinary acid-base excretion, we measured urinary excretion in control rats, NaHCO3-loaded rats, and NH4Cl-loaded rats. Total organic anions were measured by the titration method of Van Slyke. As expected, NaHCO3 loading increased urine pH and decreased net acid excretion (NH4+ + titratable acid - HCO3-), whereas NH4Cl loading had the opposite effect. Organic anion excretion was increased in response to NaHCO3 loading and decreased in response to NH4Cl loading. We quantified the overall effect of organic ion plus inorganic buffer ion excretion on acid-base balance. The amounts of organic anions excreted by all animals in this study were greater than the amounts of NH4+, HCO3-, or titratable acidity excreted. In addition, in response to acid and alkali loading, changes in urinary organic anion excretion were 40-50% as large as changes in net acid excretion. We conclude that, in rats, regulation of organic anion excretion can contribute importantly to the overall renal response to acid-base disturbances.


Sign in / Sign up

Export Citation Format

Share Document