scholarly journals A Robust Workflow for Acquiring and Preprocessing Ambient Vibration Data from Small Aperture Ocean Bottom Seismometer Arrays to Extract Scholte and Love Waves Phase-Velocity Dispersion Curves

Author(s):  
Agostiny Marrios Lontsi ◽  
Anastasiia Shynkarenko ◽  
Katrina Kremer ◽  
Manuel Hobiger ◽  
Paolo Bergamo ◽  
...  

AbstractThe phase-velocity dispersion curve (DC) is an important characteristic of the propagation of surface waves in sedimentary environments. Although the procedure for DC estimation in onshore environments using ambient vibration recordings is well established, the DC estimation in offshore environments using Ocean Bottom Seismometers (OBS) array recordings of ambient vibrations presents three additional challenges: (1) the localization of sensors, (2) the orientation of the OBS horizontal components, and (3) the clock error. Here, we address these challenges in an inherent preprocessing workflow to ultimately extract the Love and Scholte wave DC from small aperture OBS array measurements performed between 2018 and 2020 in Lake Lucerne (Switzerland). The arrays have a maximum aperture of 679 m and a maximum deployment water depth of 81 m. The challenges related to the OBS location on the lake floor are addressed by combining the multibeam bathymetry map and the backscatter image for the investigated site with the differential GPS coordinates of the OBS at recovery. The OBS measurements are complemented by airgun surveys. Airgun data are first used to estimate the misorientation of the horizontal components of the OBS and second to estimate the clock error. To assess the robustness of the preprocessing workflow, we use two array processing methods, namely the three-component high-resolution frequency-wavenumber and the interferometric multichannel analysis of surface waves, to estimate the dispersion characteristics of the propagating Scholte and Love waves for one of the OBS array sites. The results show the effectiveness of the preprocessing workflow. We observe the phase-velocity dispersion curve branches in the frequency range between 1.2 and 3.2 Hz for both array processing techniques.

2021 ◽  
Author(s):  
Agostiny Marrios Lontsi ◽  
Anastasiia Shynkarenko ◽  
Katrina Kremer ◽  
Manuel Hobiger ◽  
Paolo Bergamo ◽  
...  

Abstract The phase-velocity dispersion curve (DC) is an important characteristic of the propagation of surface waves in sedimentary environments. Although the procedure for DC estimation in onshore environments using ambient vibration recordings is well established, the DC estimation in offshore environments using arrays of Ocean Bottom Seismometers (OBS) presents three main challenges. These are the localization, the orientation of the OBS horizontal components, and the clock error. Here, we concentrate on the workflow for a robust estimation of the phase-velocity dispersion curves from small aperture OBS array measurements in Lake Lucerne (Switzerland). OBS array campaigns were performed between 2018 and 2020 using arrays with a maximum aperture of 679 m at a maximum water depth of 81 m. The challenges related to the OBS location on the lake floor were addressed by combining the multibeam bathymetry map and the backscatter image for the investigated site with the differential GPS coordinates of the OBS at recovery. The OBS measurements were complemented by airgun surveys. Airgun data were first used to estimate the misorientation of the horizontal components of the OBS and second to estimate the clock error. Finally, we use two array processing methods, namely the three-component high-resolution frequency-wavenumber and the interferometric multichannel analysis of surface waves, to estimate the dispersion characteristics of the propagating surface waves for one of the array sites. We clearly observe the phase-velocity dispersion curve branches for Scholte and Love waves in the frequency range between 1.2 and 3.2 Hz for both array processing techniques.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6990
Author(s):  
Lina Draudvilienė ◽  
Olgirdas Tumšys ◽  
Renaldas Raišutis

The possibilities of an effective method of two adjacent signals are investigated for the evaluation of Lamb waves phase velocity dispersion in objects of different types, namely polyvinyl chloride (PVC) film and wind turbine blade (WTB). A new algorithm based on peaks of spectrum magnitude is presented and used for the comparison of the results. To use the presented method, the wavelength-dependent parameter is proposed to determine the optimal distance range, which is necessary in selecting two signals for analysis. It is determined that, in the range of 0.17–0.5 wavelength where δcph is not higher than 5%, it is appropriate to use in the case of an A0 mode in PVC film sample. The smallest error of 1.2%, in the distance greater than 1.5 wavelengths, is obtained in the case of the S0 mode. Using the method of two signals analysis for PVC sample, the phase velocity dispersion curve of the A0 mode is reconstructed using selected distances x1 = 70 mm and x2 = 70.5 mm between two spatial positions of a receiving transducer with a mean relative error δcph=2.8%, and for S0 mode, x1 = 61 mm and x2 = 79.7 mm with δcph=0.99%. In the case of the WTB sample, the range of 0.1–0.39 wavelength, where δcph is not higher than 3%, is determined as the optimal distance range between two adjacent signals. The phase velocity dispersion curve of the A0 mode is reconstructed in two frequency ranges: first, using selected distances x1 = 225 mm and x2 = 231 mm with mean relative error δcph=0.3%; and second, x1 = 225 mm and x2 = 237 mm with δcph=1.3%.


Author(s):  
Shichuan Yuan ◽  
Zhenguo Zhang ◽  
Hengxin Ren ◽  
Wei Zhang ◽  
Xianhai Song ◽  
...  

ABSTRACT In this study, the characteristics of Love waves in viscoelastic vertical transversely isotropic layered media are investigated by finite-difference numerical modeling. The accuracy of the modeling scheme is tested against the theoretical seismograms of isotropic-elastic and isotropic-viscoelastic media. The correctness of the modeling results is verified by the theoretical phase-velocity dispersion curves of Love waves in isotropic or anisotropic elastic or viscoelastic media. In two-layer half-space models, the effects of velocity anisotropy, viscoelasticity, and attenuation anisotropy of media on Love waves are studied in detail by comparing the modeling results obtained for anisotropic-elastic, isotropic-viscoelastic, and anisotropic-viscoelastic media with those obtained for isotropic-elastic media. Then, Love waves in three typical four-layer half-space models are simulated to further analyze the characteristics of Love waves in anisotropic-viscoelastic layered media. The results show that Love waves propagating in anisotropic-viscoelastic media are affected by both the anisotropy and viscoelasticity of media. The velocity anisotropy of media causes substantial changes in the values and distribution range of phase velocities of Love waves. The viscoelasticity of media leads to the amplitude attenuation and phase velocity dispersion of Love waves, and these effects increase with decreasing quality factors. The attenuation anisotropy of media indicates that the viscoelasticity degree of media is direction dependent. Comparisons of phase velocity ratios suggest that the change degree of Love-wave phase velocities due to viscoelasticity is much less than that caused by velocity anisotropy.


2018 ◽  
Vol 184 ◽  
pp. 1156-1164 ◽  
Author(s):  
L. Draudviliene ◽  
H. Ait Aider ◽  
O. Tumsys ◽  
L. Mazeika

Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. B243-B257 ◽  
Author(s):  
Majed Almalki ◽  
Brett Harris ◽  
J. Christian Dupuis

A set of field experiments using multiple transmitter center frequencies was completed to test the application potential of low-frequency full-waveform sonic logging in large-diameter production wells. Wireline logs were acquired in a simple open drillhole and a high-yield large diameter production well completed with wire-wound sand screens at an aquifer storage and recovery site in Perth, Western Australia. Phase-shift transform methods were applied to obtain phase-velocity dispersion images for frequencies of up to 4 kHz. A 3D representation of phase-velocity dispersion was developed to assist in the analysis of possible connections between low-frequency wave propagation modes and the distribution of hydraulic properties. For sandstone intervals in the test well, the highest hydraulic conductivity intervals were typically correlated with the lowest phase velocities. The main characteristics of dispersion images obtained from the sand-screened well were highly comparable with those obtained at the same depth level in a nearby simple drillhole open to the formation. The sand-screened well and the open-hole displayed an expected and substantial difference between dispersion in sand- and clay-dominated intervals. It appears that for clay-dominated formations, the rate of change of phase velocity can be associated to clay content. We demonstrated that with appropriate acquisition and processing, multifrequency full-waveform sonic logging applied in existing large-diameter sand-screened wells can produce valuable results. There are few wireline logging technologies that can be applied in this setting. The techniques that we used would be highly suitable for time-lapse applications in high-volume production wells or for reassessing formation properties behind existing historical production wells.


Sign in / Sign up

Export Citation Format

Share Document