scholarly journals Understanding Micropolar Theory in the Earth Sciences I: The Eigenfrequency $$\omega _r$$

Author(s):  
Rafael Abreu ◽  
Stephanie Durand

AbstractEven though micropolar theories are widely applied for engineering applications such as the design of metamaterials, applications in the study of the Earth’s interior still remain limited and in particular in seismology. This is due to the lack of understanding of the required elastic material parameters present in the theory as well as the eigenfrequency $$\omega _r$$ ω r which is not observed in seismic data. By showing that the general dynamic equations of the Timoshenko’s beam is a particular case of the micropolar theory we are able to connect micropolar elastic parameters to physically measurable quantities. We then present an alternative micropolar model that, based on the same physical basis as the original model, circumvents the problem of the original eigenfrequency $$\omega _r$$ ω r laking in seismological data. We finally validate our model with a seismic experiment and show it is relevant to explain observed seismic dispersion curves.

2021 ◽  
Author(s):  
Jonathan Schaeffer ◽  
Fabien Engels ◽  
Marc Grunberg ◽  
Christophe Maron ◽  
Constanza Pardo ◽  
...  

<p>Résif, the French seismological and geodetic network, was launched in 2009 in an effort to develop, modernize, and centralize geophysical observation of the Earth’s interior. This French research infrastructure uses both permanent and mobile instrument networks for continuous seismological, geodetic and gravimetric measurements.</p><p>Résif-SI is the Information System that manages, validates and distributes seismological data from Résif.</p><p>The construction of Résif-SI has lead to a federated organisation gathering several data and metadata producers (Nodes) and a national Seismological Data Centre.</p><p>The Résif Seismological Data Centre is one of 19 global centres distributing data and metadata in formats and using protocols which comply with International Federation of Digital Seismograph Networks (FDSN) standards. It is also one of the eleven nodes in EIDA, the European virtual data centre and seismic data portal in the European Plate Observing System (EPOS) framework.</p><p>Inside Résif-SI, each Node has it's specificities and dedicated procedures in order to manage and validate the data and metadata workflow from the station instruments to the Résif Seismological Data Centre.</p><p>To meet the expectations and needs of the end user in terms of data quality, metadata consistency and service availability, Résif-SI operates a complex set of quality enhancement operations.</p><p>This contribution will present the quality expectations that are in the core of Résif-SI, and show the methods and tools that help us meeting the expectations, and that could be of interest for the rest of the community.</p><p>We will then list some of our quality improvement projets and the expected results.</p>


Author(s):  
Rafael Abreu ◽  
Stephanie Durand

AbstractSeismic events produced by block rotations about vertical axis occur in many geodynamic contexts. In this study, we show that these rotations can be accounted for using the proper theory, namely micropolar theory, and a new asymmetric moment tensor can be derived. We then apply this new theory to the Kaikōura earthquake (2016/11/14), Mw 7.8, one of the most complex earthquakes ever recorded with modern instrumental techniques. Using advanced numerical techniques, we compute synthetic seismograms including a full asymmetric moment tensor and we show that it induces measurable differences in the waveforms proving that seismic data can record the effects of the block rotations observed in the field. Therefore, the theory developed in this work provides a full framework for future dynamic source inversions of asymmetric moment tensors.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. O9-O17 ◽  
Author(s):  
Upendra K. Tiwari ◽  
George A. McMechan

In inversion of viscoelastic full-wavefield seismic data, the choice of model parameterization influences the uncertainties and biases in estimating seismic and petrophysical parameters. Using an incomplete model parameterization results in solutions in which the effects of missing parameters are attributed erroneously to the parameters that are included. Incompleteness in this context means assuming the earth is elastic rather than viscoelastic. The inclusion of compressional and shear-wave quality factors [Formula: see text] and [Formula: see text] in inversion gives better estimates of reservoir properties than the less complete (elastic) model parameterization. [Formula: see text] and [Formula: see text] are sensitive primarily to fluid types and saturations. The parameter correlations are sensitive also to the model parameterization. As noise increases in the viscoelastic input data, the resolution of the estimated parameters decreases, but the parameter correlations are relatively unaffected by modest noise levels.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 453
Author(s):  
Razie Izadi ◽  
Meral Tuna ◽  
Patrizia Trovalusci ◽  
Esmaeal Ghavanloo

Efficient application of carbon nanotubes (CNTs) in nano-devices and nano-materials requires comprehensive understanding of their mechanical properties. As observations suggest size dependent behaviour, non-classical theories preserving the memory of body’s internal structure via additional material parameters offer great potential when a continuum modelling is to be preferred. In the present study, micropolar theory of elasticity is adopted due to its peculiar character allowing for incorporation of scale effects through additional kinematic descriptors and work-conjugated stress measures. An optimisation approach is presented to provide unified material parameters for two specific class of single-walled carbon nanotubes (e.g., armchair and zigzag) by minimizing the difference between the apparent shear modulus obtained from molecular dynamics (MD) simulation and micropolar beam model considering both solid and tubular cross-sections. The results clearly reveal that micropolar theory is more suitable compared to internally constraint couple stress theory, due to the essentiality of having skew-symmetric stress and strain measures, as well as to the classical local theory (Cauchy of Grade 1), which cannot accounts for scale effects. To the best of authors’ knowledge, this is the first time that unified material parameters of CNTs are derived through a combined MD-micropolar continuum theory.


2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


2014 ◽  
Vol 2 (4) ◽  
pp. T255-T271 ◽  
Author(s):  
Roderick Perez Altamar ◽  
Kurt Marfurt

Differentiating brittle and ductile rocks from surface seismic data is the key to efficient well location and completion. Brittleness average estimates based only on elastic parameters are easy to use but require empirical calibration. In contrast, brittleness index (BI) estimates are based on mineralogy laboratory measurements and, indeed, cannot be directly measured from surface seismic data. These two measures correlate reasonably well in the quartz-rich Barnett Shale, but they provide conflicting estimates of brittleness in the calcite-rich Viola, Forestburg, Upper Barnett, and Marble Falls limestone formations. Specifically, the BI accurately predicts limestone formations that form fracture barriers to be ductile, whereas the brittleness average does not. We used elemental capture spectroscopy and elastic logs measured in the same cored well to design a 2D [Formula: see text] to brittleness template. We computed [Formula: see text] and [Formula: see text] volumes through prestack seismic inversion and calibrate the results with the [Formula: see text] template from well logs. We then used microseismic event locations from six wells to calibrate our prediction, showing that most of the microseismic events occur in the brittle regions of the shale, avoiding more ductile shale layers and the ductile limestone fracture barriers. Our [Formula: see text] to brittleness template is empirical and incorporates basin- and perhaps even survey-specific correlations of mineralogy and elastic parameters through sedimentation, oxygenation, and diagenesis. We do not expect this specific template to be universally applicable in other mudstone rock basins; rather, we recommend interpreters generate similar site-specific templates from logs representative of their area, following the proposed workflow.


Geophysics ◽  
1991 ◽  
Vol 56 (9) ◽  
pp. 1423-1431 ◽  
Author(s):  
Anton Ziolkowski ◽  
Evert Slob

We investigate the possibility of finding the source signature from multichannel seismic data by factorization of the Z-transforms of the seismic traces. In the convolutional model of the data, the source signature is the same from trace to trace within a shot gather, while the impulse response of the earth varies. In the noise‐free case, the roots of the Z-transform of the wavelet are the same from trace to trace, while the roots of the Z-transform of the impulse response of the earth must move from trace to trace. It follows that the roots of the wavelet can be found by the invariance of their positions. We demonstrate this using a simple wedge model. No assumptions about the length of the wavelet or the statistical properties of the impulse response of the earth are required. It is shown that this idea cannot work on real seismic data. There are two difficulties which we regard as insuperable. First, even without noise, a seismic trace cannot be regarded as a complete convolution, because the data are always truncated. This causes the factorization to be inexact: the wavelet roots move from trace to trace and are indistinguishable from the roots of the earth’s impulse response. Second, the addition of a small amount of noise alters the root pattern unpredictably from trace to trace and the roots of the wavelet are again indistinguishable from the roots of the earth’s impulse response. We conclude that it is impossible to identify and extract the true source signature from real seismic data using no assumptions about the statistical properties of the impulse response of the earth. We propose that the signature should be measured.


Sign in / Sign up

Export Citation Format

Share Document