7. Inversion of Seismic Data for Elastic Parameters: A Tool for Gas-Hydrate Characterization

Author(s):  
M. Riedel ◽  
M. W. Lee ◽  
G. Bellefleur
2021 ◽  
pp. 1-29
Author(s):  
Papia Nandi ◽  
Patrick Fulton ◽  
James Dale

As rising ocean temperatures can destabilize gas hydrate, identifying and characterizing large shallow hydrate bodies is increasingly important in order to understand their hazard potential. In the southwestern Gulf of Mexico, reanalysis of 3D seismic reflection data reveals evidence for the presence of six potentially large gas hydrate bodies located at shallow depths below the seafloor. We originally interpreted these bodies as salt, as they share common visual characteristics on seismic data with shallow allochthonous salt bodies, including high-impedance boundaries and homogenous interiors with very little acoustic reflectivity. However, when seismic images are constructed using acoustic velocities associated with salt, the resulting images were of poor quality containing excessive moveout in common reflection point (CRP) offset image gathers. Further investigation reveals that using lower-valued acoustic velocities results in higher quality images with little or no moveout. We believe that these lower acoustic values are representative of gas hydrate and not of salt. Directly underneath these bodies lies a zone of poor reflectivity, which is both typical and expected under hydrate. Observations of gas in a nearby well, other indicators of hydrate in the vicinity, and regional geologic context, all support the interpretation that these large bodies are composed of hydrate. The total equivalent volume of gas within these bodies is estimated to potentially be as large as 1.5 gigatons or 10.5 TCF, considering uncertainty for estimates of porosity and saturation, comparable to the entire proven natural gas reserves of Trinidad and Tobago in 2019.


2021 ◽  
pp. 1-59
Author(s):  
Kai Lin ◽  
Xilei He ◽  
Bo Zhang ◽  
Xiaotao Wen ◽  
Zhenhua He ◽  
...  

Most of current 3D reservoir’s porosity estimation methods are based on analyzing the elastic parameters inverted from seismic data. It is well-known that elastic parameters vary with pore structure parameters such as pore aspect ratio, consolidate coefficient, critical porosity, etc. Thus, we may obtain inaccurate 3D porosity estimation if the chosen rock physics model fails properly address the effects of pore structure parameters on the elastic parameters. However, most of current rock physics models only consider one pore structure parameter such as pore aspect ratio or consolidation coefficient. To consider the effect of multiple pore structure parameters on the elastic parameters, we propose a comprehensive pore structure (CPS) parameter set that is generalized from the current popular rock physics models. The new CPS set is based on the first order approximation of current rock physics models that consider the effect of pore aspect ratio on elastic parameters. The new CPS set can accurately simulate the behavior of current rock physics models that consider the effect of pore structure parameters on elastic parameters. To demonstrate the effectiveness of proposed parameters in porosity estimation, we use a theoretical model to demonstrate that the proposed CPS parameter set properly addresses the effect of pore aspect ratio on elastic parameters such as velocity and porosity. Then, we obtain a 3D porosity estimation for a tight sand reservoir by applying it seismic data. We also predict the porosity of the tight sand reservoir by using neural network algorithm and a rock physics model that is commonly used in porosity estimation. The comparison demonstrates that predicted porosity has higher correlation with the porosity logs at the blind well locations.


2014 ◽  
Vol 2 (4) ◽  
pp. T255-T271 ◽  
Author(s):  
Roderick Perez Altamar ◽  
Kurt Marfurt

Differentiating brittle and ductile rocks from surface seismic data is the key to efficient well location and completion. Brittleness average estimates based only on elastic parameters are easy to use but require empirical calibration. In contrast, brittleness index (BI) estimates are based on mineralogy laboratory measurements and, indeed, cannot be directly measured from surface seismic data. These two measures correlate reasonably well in the quartz-rich Barnett Shale, but they provide conflicting estimates of brittleness in the calcite-rich Viola, Forestburg, Upper Barnett, and Marble Falls limestone formations. Specifically, the BI accurately predicts limestone formations that form fracture barriers to be ductile, whereas the brittleness average does not. We used elemental capture spectroscopy and elastic logs measured in the same cored well to design a 2D [Formula: see text] to brittleness template. We computed [Formula: see text] and [Formula: see text] volumes through prestack seismic inversion and calibrate the results with the [Formula: see text] template from well logs. We then used microseismic event locations from six wells to calibrate our prediction, showing that most of the microseismic events occur in the brittle regions of the shale, avoiding more ductile shale layers and the ductile limestone fracture barriers. Our [Formula: see text] to brittleness template is empirical and incorporates basin- and perhaps even survey-specific correlations of mineralogy and elastic parameters through sedimentation, oxygenation, and diagenesis. We do not expect this specific template to be universally applicable in other mudstone rock basins; rather, we recommend interpreters generate similar site-specific templates from logs representative of their area, following the proposed workflow.


Sign in / Sign up

Export Citation Format

Share Document