Photochemical degradation of dissolved organic matter from streams in the western Lake Superior watershed

2013 ◽  
Vol 75 (4) ◽  
pp. 509-522 ◽  
Author(s):  
Megan J. Macdonald ◽  
Elizabeth C. Minor
2019 ◽  
Vol 21 (7) ◽  
pp. 1215-1215
Author(s):  
Hongyu Li ◽  
Elizabeth C. Minor

Correction for ‘Dissolved organic matter in Lake Superior: insights into the effects of extraction methods on chemical composition’ by Hongyu Li et al., Environ. Sci.: Processes Impacts, 2015, 17, 1829–1840.


2008 ◽  
Vol 59 (9) ◽  
pp. 780 ◽  
Author(s):  
Julia A. Howitt ◽  
Darren S. Baldwin ◽  
Gavin N. Rees ◽  
Barry T. Hart

Photochemical degradation of dissolved organic matter (DOM) can influence food webs by altering the availability of carbon to microbial communities, and may be particularly important following periods of high DOM input (e.g. flooding of forested floodplains). Iron oxides can facilitate these reactions, but their influence on subsequent organic products is poorly understood. Degradation experiments with billabong (= oxbow lake) water and river red gum (Eucalyptus camaldulensis) leaf leachate were conducted to assess the importance of these reactions in floodplain systems. Photochemical degradation of DOM in sunlight-irradiated quartz tubes (with and without amorphous iron oxide) was studied using gas chromatography and UV-visible spectroscopy. Photochemical reactions generated gaseous products and small organic acids. Bioavailability of billabong DOM increased following irradiation, whereas that of leaf leachate was not significantly altered. Fluorescence excitation-emission spectra suggested that the humic component of billabong organic matter was particularly susceptible to degradation, and the source of DOM influenced the changes observed. The addition of amorphous iron oxide increased rates of photochemical degradation of leachate and billabong DOM. The importance of photochemical reactions to aquatic systems will depend on the source of the DOM and its starting bioavailability, whereas inputs of freshly formed iron oxides will accelerate the processes.


2005 ◽  
Vol 62 (2) ◽  
pp. 472-481 ◽  
Author(s):  
Jennifer L Klug

In aquatic systems, the presence of colored dissolved organic matter (DOM) may affect algal growth in numerous ways. This paper focuses on the effects of DOM on resource availability. DOM contains nitrogen and phosphorus, which may become available following microbial or photochemical degradation. Also, addition of DOM may stimulate bacterial growth, which in turn may change the availability of nitrogen, phosphorus, and inorganic carbon to algae. Experiments conducted in a moderately colored lake showed that the effect of DOM on algal growth depended on the amount of nutrients present in the peat extract and on bacterial response to DOM. There was evidence for competition for phosphorus between algae and bacteria in some treatments. In addition, when both bacteria growth and algal growth were high, bacterial respiration of DOM alleviated algal carbon limitation by providing algae with an inorganic carbon source. Thus, the degree to which bacteria are stimulated by the addition of DOM will affect the amount of phosphorus and inorganic carbon available for algal growth. These results suggest that part of the difficulty in predicting algal response to changes in DOM and nutrient concentration may be due partially to variability in bacterial responses.


2006 ◽  
Vol 68 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Paul C. Frost ◽  
James H. Larson ◽  
Carol A. Johnston ◽  
Katie C. Young ◽  
Patricia A. Maurice ◽  
...  

2013 ◽  
Vol 10 (11) ◽  
pp. 6945-6956 ◽  
Author(s):  
M. Gonsior ◽  
P. Schmitt-Kopplin ◽  
D. Bastviken

Abstract. Transformations of dissolved organic matter (DOM) in boreal lakes lead to large greenhouse gas emissions as well as substantial carbon storage in sediments. Using novel molecular characterization approaches and photochemical degradation experiments we studied how seasonal patterns in water column stratification affected the DOM in a Swedish lake under early spring and summer conditions. Dissolved organic carbon (DOC) concentrations were consistently higher above the sediment when compared to surface waters throughout the sampling periods. Photobleaching alone could not explain this difference in DOC because the lake was covered by 40 cm-thick ice during late winter sampling and still showed the same DOC trend. The differences in the molecular diversity between surface DOM in winter and summer were consistent with ongoing photobleaching/decarboxylation and a possible bacterial consumption of photo-products. Additional photo-degradation experiments using simulated sunlight showed a production of highly oxidized organic molecules and low molecular weight compounds in all late winter samples and also in the deep water sample in summer. In the surface summer DOM sample, few such molecules were produced during the photo-degradation experiments, confirming that DOM was already photobleached prior to the experiments. This study suggests that photobleaching, and therefore also the ice cover during winter, plays a central role in surface DOM transformation, with important differences in the molecular composition of DOM between surface and deep boreal lake waters. The release of DOC from boreal lake sediments also contribute to this pattern. Photochemical degradation of DOM may be more extensive following ice-out and water column turnover when non-light exposed and thereby photosensitive DOM is photo-mineralized. Hence, the yearly DOM photo-mineralization may be greater than inferred from studies of recently light-exposed DOM.


Sign in / Sign up

Export Citation Format

Share Document