Synchronization Stability and Control for Neutral Complex Dynamical Network with Interval Time-Varying Coupling Delay

2016 ◽  
Vol 36 (2) ◽  
pp. 559-576 ◽  
Author(s):  
Jian-an Wang ◽  
Chan Zeng ◽  
Xinyu Wen
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Lihong Yan ◽  
Junmin Li

In this paper, exponential synchronization problem of complex dynamical networks with unknown periodically coupling strengths was investigated. An aperiodically intermittent control synchronization strategy is proposed. Based on Lyapunov exponential stability theory, inequality techniques, and adaptive learning laws design, some sufficient exponential synchronization criteria for complex dynamical network with unknown periodical coupling weights are obtained. The numerical simulation example is presented to illustrate the feasibility of theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lihong Yan ◽  
Junmin Li

In this paper, we investigate finite-time synchronization problems of complex dynamical networks with different dimensions of nodes, which contain unknown periodically coupling structures and bounded time-varying delay. Based on finite-time stability theory, the inequality techniques, and the properties of Kronecker production of matrices, some useful finite-time synchronization criteria for complex dynamical network with unknown periodical couplings have been obtained. In addition, with proper adaptive periodical learning law designed, the unknown periodical couplings have been estimated successfully. Finally, some simulation examples are performed to verify the theoretical findings.


Sign in / Sign up

Export Citation Format

Share Document