scholarly journals Mate attraction, chemical defense, and competition avoidance in the parasitoid wasp Leptopilina pacifica

Chemoecology ◽  
2020 ◽  
Author(s):  
Lea C. Böttinger ◽  
Frederic Hüftlein ◽  
Johannes Stökl

AbstractA major hypothesis for the evolution of chemical signals is that pheromones arise from non-communicative precursor compounds. However, data supporting this hypothesis are rare, primarily because the original functions of the antecedent compounds often have been lost. A notable exception, however, is the parasitoid wasp species Leptopilina heterotoma, whose compound (−)-iridomyrmecin is used as a defensive secretion, a cue for females to avoid competition with con- and hetero-specific females, and as the primary component of the females’ sex pheromone. To better understand the evolution of sex pheromones from defensive compounds, we examined the chemical ecology of L. pacifica, the sister species of L. heterotoma. Here, we show that L. pacifica also produces a defensive secretion containing a species-specific mixture of mostly iridoid compounds. However, the composition of the secretion is more complex than in L. heterotoma, and iridomyrmecin is only a minor component. Moreover, in contrast to L. heterotoma, conspecific female competitors were not avoided by female subjects, and a role of the iridoids in the female sex pheromone of L. pacifica can be excluded, as only the females’ cuticular hydrocarbons (CHCs) resulted in the elicitation of courtship by males. Although closely related, the two sister species show substantial differences in the use of the defensive secretion for communicative purposes. Variation in pheromone usage in this genus still presents a conundrum, highlighting the need for additional studies to understand the selective forces shaping the evolution of pheromone composition.

2007 ◽  
Vol 34 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Joachim Ruther ◽  
Sven Steiner ◽  
Leif-Alexander Garbe

1990 ◽  
Vol 16 (5) ◽  
pp. 1471-1483 ◽  
Author(s):  
M. Riba ◽  
J. A. Rosell ◽  
M. Eizaguirre ◽  
R. Canela ◽  
A. Guerrero

1993 ◽  
Vol 19 (7) ◽  
pp. 1303-1313 ◽  
Author(s):  
Walter S. Leal ◽  
Masaaki Sawada ◽  
Makoto Hasegawa

2012 ◽  
Vol 8 ◽  
pp. 1246-1255 ◽  
Author(s):  
Nicole Zimmermann ◽  
Robert Hilgraf ◽  
Lutz Lehmann ◽  
Daniel Ibarra ◽  
Wittko Francke

Starting from the enantiomers of limonene, all eight stereoisomers of trans-fused dihydronepetalactones were synthesized. Key compounds were pure stereoisomers of 1-acetoxymethyl-2-methyl-5-(2-hydroxy-1-methylethyl)-1-cyclopentene. The stereogenic center of limonene was retained at position 4a of the target compounds and used to stereoselectively control the introduction of the other chiral centers during the synthesis. Basically, this approach could also be used for the synthesis of enantiomerically pure trans-fused iridomyrmecins. Using synthetic reference samples, the combination of enantioselective gas chromatography and mass spectrometry revealed that volatiles released by the endohyperparasitoid wasp Alloxysta victrix contain the enantiomerically pure trans-fused (4R,4aR,7R,7aS)-dihydronepetalactone as a minor component, showing an unusual (R)-configured stereogenic center at position 7.


2012 ◽  
Vol 8 ◽  
pp. 1256-1264 ◽  
Author(s):  
Robert Hilgraf ◽  
Nicole Zimmermann ◽  
Lutz Lehmann ◽  
Armin Tröger ◽  
Wittko Francke

Following our earlier approach to the synthesis of dihydronepetalactones, all eight stereoisomers of trans-fused iridomyrmecins were synthesized starting from the enantiomers of limonene. Combined gas chromatography and mass spectrometry including enantioselective gas chromatography revealed that volatiles released by the endohyperparasitoid wasp Alloxysta victrix contain (4S,4aR,7S,7aR)-iridomyrmecin of 95–97% ee and stereochemically pure (4S,4aS,7R,7aS)-iridomyrmecin as a minor component.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alenka Žunič-Kosi ◽  
Nataša Stritih-Peljhan ◽  
Yunfan Zou ◽  
J. Steven McElfresh ◽  
Jocelyn G. Millar

AbstractThe longhorned beetle Arhopalus rusticus (Coleoptera: Cerambycidae, Spondylinae) is a common species in conifer forests of the Northern Hemisphere, but with global trade, it has invaded and become established in New Zealand, Australia, and South America. Arhopalus rusticus is a suspected vector of the phytopathogenic nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease, which is a major threat to pine forests worldwide. Here, we report the identification of a volatile, male-produced aggregation-sex pheromone for this species. Headspace odours from males contained a major male-specific compound, identified as (2 S, 5E)-6,10-dimethyl-5,9-undecadien-2-ol (common name (S)-fuscumol), and a minor component (E)-6,10-dimethyl-5,9-undecadien-2-one (geranylacetone). Both compounds are known pheromone components for species in the same subfamily. In field trials in its native range in Slovenia, (S)-fuscumol was significantly more attractive to beetles of both sexes, than racemic fuscumol and a blend of host plant volatiles commonly used as an attractant for this species. Fuscumol-baited traps also caught significant numbers of another spondylidine species, Spondylis buprestoides (L.), and a rare click beetle, Stenagostus rufus (De Geer). The pheromone can be exploited as a cost-effective and environmentally safe tool for detection and monitoring of this invasive species at ports of entry, and for monitoring the beetle’s distribution and population trends in both endemic and invasive populations.


2009 ◽  
Vol 74 (10) ◽  
pp. 1543-1557 ◽  
Author(s):  
Herman P. Van Leeuwen ◽  
Raewyn M. Town

The degree of (de)protonation of aqueous metal species has significant consequences for the kinetics of complex formation/dissociation. All protonated forms of both the ligand and the hydrated central metal ion contribute to the rate of complex formation to an extent weighted by the pertaining outer-sphere stabilities. Likewise, the lifetime of the uncomplexed metal is determined by all the various protonated ligand species. Therefore, the interfacial reaction layer thickness, μ, and the ensuing kinetic flux, Jkin, are more involved than in the conventional case. All inner-sphere complexes contribute to the overall rate of dissociation, as weighted by their respective rate constants for dissociation, kd. The presence of inner-sphere deprotonated H2O, or of outer-sphere protonated ligand, generally has a great impact on kd of the inner-sphere complex. Consequently, the overall flux can be dominated by a species that is a minor component of the bulk speciation. The concepts are shown to provide a good description of experimental stripping chronopotentiometric data for several protonated metal–ligand systems.


Sign in / Sign up

Export Citation Format

Share Document