scholarly journals A male-produced aggregation-sex pheromone of the beetle Arhopalus rusticus (Coleoptera: Cerambycidae, Spondylinae) may be useful in managing this invasive species

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alenka Žunič-Kosi ◽  
Nataša Stritih-Peljhan ◽  
Yunfan Zou ◽  
J. Steven McElfresh ◽  
Jocelyn G. Millar

AbstractThe longhorned beetle Arhopalus rusticus (Coleoptera: Cerambycidae, Spondylinae) is a common species in conifer forests of the Northern Hemisphere, but with global trade, it has invaded and become established in New Zealand, Australia, and South America. Arhopalus rusticus is a suspected vector of the phytopathogenic nematode, Bursaphelenchus xylophilus, the causative agent of pine wilt disease, which is a major threat to pine forests worldwide. Here, we report the identification of a volatile, male-produced aggregation-sex pheromone for this species. Headspace odours from males contained a major male-specific compound, identified as (2 S, 5E)-6,10-dimethyl-5,9-undecadien-2-ol (common name (S)-fuscumol), and a minor component (E)-6,10-dimethyl-5,9-undecadien-2-one (geranylacetone). Both compounds are known pheromone components for species in the same subfamily. In field trials in its native range in Slovenia, (S)-fuscumol was significantly more attractive to beetles of both sexes, than racemic fuscumol and a blend of host plant volatiles commonly used as an attractant for this species. Fuscumol-baited traps also caught significant numbers of another spondylidine species, Spondylis buprestoides (L.), and a rare click beetle, Stenagostus rufus (De Geer). The pheromone can be exploited as a cost-effective and environmentally safe tool for detection and monitoring of this invasive species at ports of entry, and for monitoring the beetle’s distribution and population trends in both endemic and invasive populations.

2007 ◽  
Vol 34 (1) ◽  
pp. 99-102 ◽  
Author(s):  
Joachim Ruther ◽  
Sven Steiner ◽  
Leif-Alexander Garbe

Chemoecology ◽  
2020 ◽  
Author(s):  
Lea C. Böttinger ◽  
Frederic Hüftlein ◽  
Johannes Stökl

AbstractA major hypothesis for the evolution of chemical signals is that pheromones arise from non-communicative precursor compounds. However, data supporting this hypothesis are rare, primarily because the original functions of the antecedent compounds often have been lost. A notable exception, however, is the parasitoid wasp species Leptopilina heterotoma, whose compound (−)-iridomyrmecin is used as a defensive secretion, a cue for females to avoid competition with con- and hetero-specific females, and as the primary component of the females’ sex pheromone. To better understand the evolution of sex pheromones from defensive compounds, we examined the chemical ecology of L. pacifica, the sister species of L. heterotoma. Here, we show that L. pacifica also produces a defensive secretion containing a species-specific mixture of mostly iridoid compounds. However, the composition of the secretion is more complex than in L. heterotoma, and iridomyrmecin is only a minor component. Moreover, in contrast to L. heterotoma, conspecific female competitors were not avoided by female subjects, and a role of the iridoids in the female sex pheromone of L. pacifica can be excluded, as only the females’ cuticular hydrocarbons (CHCs) resulted in the elicitation of courtship by males. Although closely related, the two sister species show substantial differences in the use of the defensive secretion for communicative purposes. Variation in pheromone usage in this genus still presents a conundrum, highlighting the need for additional studies to understand the selective forces shaping the evolution of pheromone composition.


1990 ◽  
Vol 16 (5) ◽  
pp. 1471-1483 ◽  
Author(s):  
M. Riba ◽  
J. A. Rosell ◽  
M. Eizaguirre ◽  
R. Canela ◽  
A. Guerrero

1993 ◽  
Vol 19 (7) ◽  
pp. 1303-1313 ◽  
Author(s):  
Walter S. Leal ◽  
Masaaki Sawada ◽  
Makoto Hasegawa

2009 ◽  
Vol 74 (10) ◽  
pp. 1543-1557 ◽  
Author(s):  
Herman P. Van Leeuwen ◽  
Raewyn M. Town

The degree of (de)protonation of aqueous metal species has significant consequences for the kinetics of complex formation/dissociation. All protonated forms of both the ligand and the hydrated central metal ion contribute to the rate of complex formation to an extent weighted by the pertaining outer-sphere stabilities. Likewise, the lifetime of the uncomplexed metal is determined by all the various protonated ligand species. Therefore, the interfacial reaction layer thickness, μ, and the ensuing kinetic flux, Jkin, are more involved than in the conventional case. All inner-sphere complexes contribute to the overall rate of dissociation, as weighted by their respective rate constants for dissociation, kd. The presence of inner-sphere deprotonated H2O, or of outer-sphere protonated ligand, generally has a great impact on kd of the inner-sphere complex. Consequently, the overall flux can be dominated by a species that is a minor component of the bulk speciation. The concepts are shown to provide a good description of experimental stripping chronopotentiometric data for several protonated metal–ligand systems.


1988 ◽  
Vol 54 (5) ◽  
pp. 606-615 ◽  
Author(s):  
Keiko KURODA ◽  
Toshihiro YAMADA ◽  
Kazuhiko MINEO ◽  
Hirotada TAMURA

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
N. de Graeff ◽  
Karin R. Jongsma ◽  
Annelien L. Bredenoord

Abstract Background Gene drive technologies (GDTs) promote the rapid spread of a particular genetic element within a population of non-human organisms. Potential applications of GDTs include the control of insect vectors, invasive species and agricultural pests. Whether, and if so, under what conditions, GDTs should be deployed is hotly debated. Although broad stances in this debate have been described, the convictions that inform the moral views of the experts shaping these technologies and related policies have not been examined in depth in the academic literature. Methods In this qualitative study, we interviewed GDT experts (n = 33) from different disciplines to identify and better understand their moral views regarding these technologies. The pseudonymized transcripts were analyzed thematically. Results The respondents’ moral views were principally influenced by their attitudes towards (1) the uncertainty related to GDTs; (2) the alternatives to which they should be compared; and (3) the role humans should have in nature. Respondents agreed there is epistemic uncertainty related to GDTs, identified similar knowledge gaps, and stressed the importance of realistic expectations in discussions on GDTs. They disagreed about whether uncertainty provides a rationale to refrain from field trials (‘risks of intervention’ stance) or to proceed with phased testing to obtain more knowledge given the harms of the status quo (‘risks of non-intervention’ stance). With regards to alternatives to tackle vector-borne diseases, invasive species and agricultural pests, respondents disagreed about which alternatives should be considered (un)feasible and (in)sufficiently explored: conventional strategies (‘downstream solutions’ stance) or systematic changes to health care, political and agricultural systems (‘upstream solutions’ stance). Finally, respondents held different views on nature and whether the use of GDTs is compatible with humans’ role in nature (‘interference’ stance) or not (‘non-interference stance’). Conclusions This interview study helps to disentangle the debate on GDTs by providing a better understanding of the moral views of GDT experts. The obtained insights provide valuable stepping-stones for a constructive debate about underlying value conflicts and call attention to topics that deserve further (normative) reflection. Further evaluation of these issues can facilitate the debate on and responsible development of GDTs.


Sign in / Sign up

Export Citation Format

Share Document