A comparative study on brown-rot fungus decay and subterranean termite resistance of thermally-modified and ACQ-C-treated wood

2007 ◽  
Vol 65 (5) ◽  
pp. 353-358 ◽  
Author(s):  
Jun Li Shi ◽  
Duygu Kocaefe ◽  
Terry Amburgey ◽  
Jilei Zhang
Insects ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 41 ◽  
Author(s):  
Nadia Kamaluddin ◽  
Akiko Nakagawa-Izumi ◽  
Shota Nishizawa ◽  
Ayuko Fukunaga ◽  
Shuichi Doi ◽  
...  

Holzforschung ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 455-458 ◽  
Author(s):  
S. Nami Kartal

Abstract The decay and termite resistance of boric acid (BA)- and di-sodium octoborate tetrahydrate (DOT)-treated sugi sapwood was tested in the context of additional heat treatments at two temperature levels. Heat treatments had no effect on boron release and almost all boron was leached from specimens during a 10-day weathering period. Decay tests with the brown-rot fungus Fomitopsis palustris and the white-rot fungus Trametes versicolor and a 3-week termite resistance test with the subterranean termite Coptotermes formosanus were performed. Heat treatments did not increase the decay resistance of either BA- or DOT-treated specimens against the brown-rot fungus. However, the decay resistance of BA-treated specimens against the same fungus increased after heat treatment at 220°C for 2 h. Heat treatments at 180°C for 4 h and 220°C for 2 h also resulted in increased decay resistance of DOT-treated specimens against T. versi-color. Increased resistance against termite attack was observed only in DOT-treated specimens heated at 180°C for 4 h or at 220°C for 2 h. Accordingly, a synergistic effect between heat and DOT treatments was observed for resistance against white-rot decay and termites.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 779-788
Author(s):  
Maede Ahadnezhad ◽  
Soheila Izadyar ◽  
Davood Efhamisisi

The density, swelling, and fungal decay of poplar (Populus deltoides) wood treated with pistachio resin (PR) obtained from Pistacia atlantica were investigated. The white-rot fungus Trametes versicolor and the brown-rot fungus Coniophora puteana were used. Methanolic solutions of PR with different concentrations of 1%, 6%, 12%, and 15% were used as the preservative solution. Wood samples were saturated by two different vacuum/pressure (V/P) and dipping methods. The density, volumetric swelling of treated wood, and their mass loss (ML) caused by fungal decay were determined. The density of treated species increased to 15.4% and 5.8% for V/P and dipping methods, respectively, at 15% PR concentration. The volumetric swelling of the treated samples was reduced to 24.5% and 16.8% for V/P and dipping procedure, respectively, at 15% PR concentration. The mass loss of treated samples after exposure to T. versicolor was less than the untreated one (17.4% for V/P and 22.6% for dipping methods at 15% PR concentration). The results showed the better performance of V/P treatment in promotion of wood durability against fungal decay than the dipping method.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


2016 ◽  
Vol 82 (22) ◽  
pp. 6557-6572 ◽  
Author(s):  
Yuka Kojima ◽  
Anikó Várnai ◽  
Takuya Ishida ◽  
Naoki Sunagawa ◽  
Dejan M. Petrovic ◽  
...  

ABSTRACTFungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such asGloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome ofG. trabeumencodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants ofGtLPMO9A seem to be produced, a single-domain variant,GtLPMO9A-1, and a longer variant,GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinctGtLPMO9A-2 inPichia pastorisand investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed thatGtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs,GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action ofGtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO,NcLPMO9C fromNeurospora crassarevealed thatGtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity ofNcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities ofGtLPMO9A-2. These results provide insight into the LPMO potential ofG. trabeumand provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity.IMPORTANCECurrently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme,GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone.GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential ofGtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall.


1970 ◽  
Vol 24 ◽  
pp. 3379-3390 ◽  
Author(s):  
T. Kent Kirk ◽  
Erich Adler ◽  
Olof Wahlberg ◽  
Erik Larsen ◽  
Akira Shimizu

Holzforschung ◽  
2001 ◽  
Vol 55 (4) ◽  
pp. 365-372 ◽  
Author(s):  
Rebecca E. Ibach ◽  
Roger M. Rowell

Summary This paper is the second in a two-part series on in situ polymerization of bioactive monomers as an alternative to conventional preservative treatments. In this part of the study, bioactive monomers were evaluated for their ability to provide resistance to decay and protection against fire. Five bioactive monomers were synthesized: (1) pentachlorophenolyl acrylate (PCPA), (2) tributyltin acrylate (TBTA), (3) 8-hydroxyquinolyl acrylate (HQA), (4) 5,7-dibromo-8-hydroxyquinolyl acrylate (DBHQA), and (5) diethyl-N1N-bis (acryloxyethyl) aminomethyl phosphonate (Fyrol 6 acrylate, F6A). Southern pine sapwood samples were treated with acrylate solutions at different retention levels and with various amounts of crosslinker (trimethylolpropane trimethacrylate, TMPTM), then polymerized in situ. Methyl methacrylate (MMA) was used as the control. Biological resistance to the brown-rot fungus Gloeophyllum trabeum was determined on acetone-leached and unleached samples. PCPA showed some biological efficacy in the absence of crosslinker, but otherwise provided no more protection than did MMA alone. TBTA was biologically effective at all retention levels except with crosslinker concentration ≥10 %. HQA was biologically effective at ≥ 2% retention. F6A was not biologically effective, although unleached wood treated with 10% F6A and 5% or no crosslinker showed some resistance to decay. The 5% DBHQA plus 5% crosslinker treatment was biologically effective in both leached and unleached wood. The effects of the highest treatment level of each monomer, after polymerization, were also evaluated by thermogravimetric analysis. All treatments provided some resistance to fire. The best treatment was 10 % F6A, which resulted in the lowest mass loss (67.0 %) and the lowest maximum temperature of pyrolysis (308.5 °C).


2011 ◽  
Vol 6 (2) ◽  
pp. 166-171 ◽  
Author(s):  
Varenyam Achal ◽  
Deepika Kumari ◽  
Xiangliang Pan

Sign in / Sign up

Export Citation Format

Share Document