scholarly journals Sphingosine is able to prevent and eliminate Staphylococcus epidermidis biofilm formation on different orthopedic implant materials in vitro

2019 ◽  
Vol 98 (2) ◽  
pp. 209-219 ◽  
Author(s):  
Sascha Beck ◽  
Carolin Sehl ◽  
Sylvia Voortmann ◽  
Hedda Luise Verhasselt ◽  
Michael J. Edwards ◽  
...  

Abstract Periprosthetic infection (PPI) is a devastating complication in joint replacement surgery. On the background of an aging population, the number of joint replacements and associated complications is expected to increase. The capability for biofilm formation and the increasing resistance of different microbes to antibiotics have complicated the treatment of PPI, requiring the need for the development of alternative treatment options. The bactericidal effect of the naturally occurring amino alcohol sphingosine has already been reported. In our study, we demonstrate the antimicrobial efficacy of sphingosine on three different strains of biofilm producing Staphylococcus epidermidis, representing one of the most frequent microbes involved in PPI. In an in vitro analysis, sphingosine’s capability for prevention and treatment of biofilm-contamination on different common orthopedic implant surfaces was tested. Coating titanium implant samples with sphingosine not only prevented implant contamination but also revealed a significant reduction of biofilm formation on the implant surfaces by 99.942%. When testing the antimicrobial efficacy of sphingosine on sessile biofilm-grown Staphylococcus epidermidis, sphingosine solution was capable to eliminate 99.999% of the bacteria on the different implant surfaces, i.e., titanium, steel, and polymethylmethacrylate. This study provides evidence on the antimicrobial efficacy of sphingosine for both planktonic and sessile biofilm-grown Staphylococcus epidermidis on contaminated orthopedic implants. Sphingosine may provide an effective and cheap treatment option for prevention and reduction of infections in joint replacement surgery. Key messages • Here we established a novel technology for prevention of implant colonization by sphingosine-coating of orthopedic implant materials. • Sphingosine-coating of orthopedic implants prevented bacterial colonization and significantly reduced biofilm formation on implant surfaces by 99.942%. • Moreover, sphingosine solution was capable to eliminate 99.999% of sessile biofilm-grown Staphylococcus epidermidis on different orthopedic implant surfaces.

Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 649
Author(s):  
Débora C. Coraça-Huber ◽  
Lisa Kreidl ◽  
Stephan Steixner ◽  
Maximilian Hinz ◽  
Dietmar Dammerer ◽  
...  

Objectives: For a better understanding of the mechanisms involved in biofilm formation, we performed a broad identification and characterization of the strains affecting implants by evaluating the morphology of biofilms formed in vitro in correlation with tests of the strains’ antibiotic susceptibility in planktonic form. The ability of the strains to form biofilms in vitro was evaluated by means of colony forming units counting, metabolic activity tests of biofilm cells, and scanning electron microscopy. Methods: A total of 140 strains were isolated from patients with orthopedic implant-related infections during the period of 2015 to 2018. The identification of the isolates was carried out through microbiological cultures and confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antibiotic susceptibility rates of the isolates were accessed according to EUCAST (European Committee on Antimicrobial Susceptibility Testing). The ability of all isolates to form biofilms in vitro was evaluated by counting the colony forming units, by measuring the metabolic activity of biofilm cells, and by analyzing the morphology of the formed biofilms using scanning electron microscopy. Results: From all the isolates, 41.84% (62 strains) were Staphylococcus epidermidis and 15.60% (22 strains) were Staphylococcus aureus. A significant difference in the capacity of biofilm formation was observed among the isolates. When correlating the biofilm forming capacity of the isolates to their antibiotic susceptibility rates, we observed that not all strains that were classified as resistant were biofilm producers in vitro. In other words, bacteria that are not good biofilm formers can show increased tolerance to multiple antibiotic substances. Conclusion: From 2015 until 2018, Staphylococcus epidermidis was the strain that caused most of the orthopedic implant-related infections in our hospital. Not all strains causing infection in orthopedic implants are able to form biofilms under in vitro conditions. Differences were observed in the number of cells and morphology of the biofilms. In addition, antibiotic resistance is not directly related to the capacity of the strains to form biofilms in vitro. Further studies should consider the use of in vitro culture conditions that better reproduce the joint environment and the growth of biofilms in humans.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2240
Author(s):  
I-Cheng Chen ◽  
Chen-Ying Su ◽  
Wei-Han Nien ◽  
Tzu-Tien Huang ◽  
Chang-Hung Huang ◽  
...  

Periprosthetic joint infection (PJI) is a devastating complication after total joint replacement with considerable morbidity and large economic burdens. Antibiotic-Loaded Bone Cement (ALBC) has been developed as a valuable tool for local administration and is becoming one of the most effective methods for the prevention and treatment of orthopedic infections. Controlling antibiotic release from ALBC is critical to achieve effective infection control, however, the antibiotic elution rates are generally low, and the mechanisms are poorly understood. Thus, the present study aims to investigate the effects of the basic acrylic bone cement components, including liquid/powder (monomer-to-polymer) ratios, radiopacifier, initiator, and doses of antibiotics on the porosity, antibiotic elution rates and mechanical properties of polymethylmethacrylate (PMMA) based ALBC. The obtained results from the in vitro studies suggested that a reduction in the liquid/powder ratio and an increase in the radiopacifier ratio and gentamicin doses led to increased porosity and release of antibiotic, while the initiator ratio exerted no effect on elution rates. In conclusion, we hope that by varying the composition of ALBC, we could considerably enhance the antibiotic elution rates by increasing porosity, while maintaining an adequate mechanical strength of the bone cements. This finding might provide insights into controlling antibiotic release from ALBC to achieve effective infection control after total joint replacement surgery.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Marco S. Caicedo ◽  
Vianey Flores ◽  
Alicia Padilla ◽  
Samelko Lauryn ◽  
Joshua J. Jacobs ◽  
...  

Abstract Background Recent studies indicate that, in addition to antibody production, lymphocyte responses to SARS-CoV-2 may play an important role in protective immunity to COVID-19 and a percentage of the general population may exhibit lymphocyte memory due to unknown/asymptomatic exposure to SARS-CoV-2 or cross-reactivity to other more common coronaviruses pre-vaccination. Total joint replacement (TJR) candidates returning to elective surgeries (median age 68 years) may exhibit similar lymphocyte and/or antibody protection to COVID-19 prior to vaccination Methods In this retrospective study, we analyzed antibody titters, lymphocyte memory, and inflammatory biomarkers specific for the Spike and Nucleocapsid proteins of the SARS-CoV-2 virus in a cohort of n=73 returning TJR candidates (knees and/or hips) pre-operatively. Results Peripheral blood serum of TJR candidate patients exhibited a positivity rate of 18.4% and 4% for IgG antibodies specific for SARS-CoV-2 nucleocapsid and spike proteins, respectively. 13.5% of TJR candidates exhibited positive lymphocyte reactivity (SI > 2) to the SARS-CoV-2 nucleocapsid protein and 38% to the spike protein. SARS-CoV-2 reactive lymphocytes exhibited a higher production of inflammatory biomarkers (i.e., IL-1β, IL-6, TNFα, and IL-1RA) compared to non-reactive lymphocytes. Conclusions A percentage of TJR candidates returning for elective surgeries exhibit pre-vaccination positive SARS-CoV-2 antibodies and T cell memory responses with associated pro-inflammatory biomarkers. This is an important parameter for understanding immunity, risk profiles, and may aid pre-operative planning. Trial registration Retrospectively registered.


2015 ◽  
Vol 68 (1) ◽  
pp. 73-79 ◽  
Author(s):  
David J. Beard ◽  
Kristina Harris ◽  
Jill Dawson ◽  
Helen Doll ◽  
David W. Murray ◽  
...  

2015 ◽  
Vol 42 ◽  
pp. S32
Author(s):  
J.E. Naili ◽  
A.C. Esbjörnsson ◽  
M.D. Iversen ◽  
M.H. Schwartz ◽  
C. Häger ◽  
...  

2014 ◽  
Vol 21 (9) ◽  
pp. 1206-1214 ◽  
Author(s):  
Lin Yan ◽  
Lei Zhang ◽  
Hongyan Ma ◽  
David Chiu ◽  
James D. Bryers

ABSTRACTNosocomial infections are the fourth leading cause of morbidity and mortality in the United States, resulting in 2 million infections and ∼100,000 deaths each year. More than 60% of these infections are associated with some type of biomedical device.Staphylococcus epidermidisis a commensal bacterium of the human skin and is the most common nosocomial pathogen infecting implanted medical devices, especially those in the cardiovasculature.S. epidermidisantibiotic resistance and biofilm formation on inert surfaces make these infections hard to treat. Accumulation-associated protein (Aap), a cell wall-anchored protein ofS. epidermidis, is considered one of the most important proteins involved in the formation ofS. epidermidisbiofilm. A small recombinant protein vaccine comprising a single B-repeat domain (Brpt1.0) ofS. epidermidisRP62A Aap was developed, and the vaccine's efficacy was evaluatedin vitrowith a biofilm inhibition assay andin vivoin a murine model of biomaterial-associated infection. A high IgG antibody response againstS. epidermidisRP62A was detected in the sera of the mice after two subcutaneous immunizations with Brpt1.0 coadministered with Freund's adjuvant. Sera from Brpt1.0-immunized mice inhibitedin vitroS. epidermidisRP62A biofilm formation in a dose-dependent pattern. After receiving two immunizations, each mouse was surgically implanted with a porous scaffold disk containing 5 × 106CFU ofS. epidermidisRP62A. Weight changes, inflammatory markers, and histological assay results after challenge withS. epidermidisindicated that the mice immunized with Brpt1.0 exhibited significantly higher resistance toS. epidermidisRP62A implant infection than the control mice. Day 8 postchallenge, there was a significantly lower number of bacteria in scaffold sections and surrounding tissues and a lower residual inflammatory response to the infected scaffold disks for the Brpt1.0-immunized mice than for of the ovalbumin (Ova)-immunized mice.


Sign in / Sign up

Export Citation Format

Share Document