scholarly journals Extent and structure of linkage disequilibrium in canola quality winter rapeseed (Brassica napus L.)

2009 ◽  
Vol 120 (5) ◽  
pp. 921-931 ◽  
Author(s):  
Wolfgang Ecke ◽  
Rosemarie Clemens ◽  
Nora Honsdorf ◽  
Heiko C. Becker
Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2006
Author(s):  
David P. Horvath ◽  
Michael Stamm ◽  
Zahirul I. Talukder ◽  
Jason Fiedler ◽  
Aidan P. Horvath ◽  
...  

A diverse population (429 member) of canola (Brassica napus L.) consisting primarily of winter biotypes was assembled and used in genome-wide association studies. Genotype by sequencing analysis of the population identified and mapped 290,972 high-quality markers ranging from 18.5 to 82.4% missing markers per line and an average of 36.8%. After interpolation, 251,575 high-quality markers remained. After filtering for markers with low minor allele counts (count > 5), we were left with 190,375 markers. The average distance between these markers is 4463 bases with a median of 69 and a range from 1 to 281,248 bases. The heterozygosity among the imputed population ranges from 0.9 to 11.0% with an average of 5.4%. The filtered and imputed dataset was used to determine population structure and kinship, which indicated that the population had minimal structure with the best K value of 2–3. These results also indicated that the majority of the population has substantial sequence from a single population with sub-clusters of, and admixtures with, a very small number of other populations. Analysis of chromosomal linkage disequilibrium decay ranged from ~7 Kb for chromosome A01 to ~68 Kb for chromosome C01. Local linkage decay rates determined for all 500 kb windows with a 10kb sliding step indicated a wide range of linkage disequilibrium decay rates, indicating numerous crossover hotspots within this population, and provide a resource for determining the likely limits of linkage disequilibrium from any given marker in which to identify candidate genes. This population and the resources provided here should serve as helpful tools for investigating genetics in winter canola.


1986 ◽  
Vol 66 (3) ◽  
pp. 425-430 ◽  
Author(s):  
R. R. DUNCAN ◽  
C. S. HOVELAND

Since rainfall generally exceeds 500 mm during the winter months and soil erosion is a problem in the southern U.S.A., a cover crop is essential to reduce soil losses. Continuous cultivation of a crop on the same land also provides the opportunity for pest problems to develop. A winter rapeseed (Brassica napus L.)-grain sorghum (Sorghum bicolor (L). Moench.) double-cropping system was investigated in the field from 1981 to 1984. Conventional tillage (CT) and no-till (NT) systems were used for both crops. Gullivar rape was planted in October and harvested in June. Winter rapeseed yields averaged 2.87 t ha−1 on CT plots in 1982. Averaged over 1983 and 1984, rape yields were 1.66 and 0.73 t ha−1 on CT and NT plots, respectively. However, the seeding method biased the rapeseed performance. Problems were encountered with winter weed control and pod shattering in the winter rape plots. Two sorghum hybrids, R. C. Young Oro Txtra and Funks G-550, were planted in June and harvested in October. Grain yields were not significantly different between hybrids (Oro 5.69 t ha−1, Funk 5.67 t ha−1) or between tillage systems (CT 5.59 t ha−1, NT 5.78 t ha−1). Grain yield differences were noted for year × hybrid × tillage interactions. Rape was a weed problem in the sorghum plots. The winter rape-sorghum double-cropping system offers an alternative to current winter small grains-sorghum/soybean (Glycine max (L.) Merr.) or winter annual legume-sorghum/soybean (Glycine max (L.) Merr.) systems; however, markets for the winter rapeseed and production economic analyses are needed prior to adoption of the system. Additional winter rapeseed research is needed to evaluate yields properly under NT conditions.Key words: Sorghum bicolor (L.) Moench, Brassica napus L., conservation tillage, multiple cropping, sorghum, rapeseed


1987 ◽  
Vol 67 (3) ◽  
pp. 675-684 ◽  
Author(s):  
G. C. BEAULIEU ◽  
D. J. HUME

In order to determine regions of adaptation of winter rapeseed (Brassica napus L.), field trials were planted at about 30 locations in Ontario in 1981 and 1982. Four cultivars were tested each year. Winter survival was poor in northern Ontario in both years, and along the north shore of Lake Erie in the first year. Over all sites, mean winter survival was 52%. At sites which did not completely winterkill, plant survival and yield averaged 70% and 2.38 t ha−1. Best winter rapeseed performance in Ontario occurred at well-drained sites with good winter snow cower and an absence of excessive flooding or cold temperatures in the spring. Cultivars did not differ in survival or yield in 1981–1982. The cultivar Jet Neuf had higher yields than the other cultivars in 1982–1983. There were differences in oil and protein content among the cultivars. The results suggest that winter rapeseed could become a viable crop in Ontario.Key words: Rapeseed (winter), Brassica napus, seed yield, winter survival, adaptation


Botany ◽  
2009 ◽  
Vol 87 (6) ◽  
pp. 616-625 ◽  
Author(s):  
Leonid Akhov ◽  
Paula Ashe ◽  
Yifang Tan ◽  
Raju Datla ◽  
Gopalan Selvaraj

The yellow seed characteristic in Brassica napus  L. is desirable because of its association with higher oil content and better quality of oil-extracted meal. YN01-429 is a yellow-seeded canola-quality germplasm developed in Canada arising from several years of research. Seed-coat pigmentation is due to oxidized proanthocyanidins (PA; condensed tannins) derived from phenylpropanoids and malonyl CoA. We found PA accumulation to be most robust in young seed coats (20 d post anthesis; dpa) of a related black-seeded line N89-53 and only very little PA in YN01-429, which also contained much less extractable phenolics. The flavonol content, however, did not show as great a difference between these two lines. Furthermore, sinapine, a product of the general phenylpropanoid metabolism, was present at comparable levels in the embryos of both lines. Dihydroflavonol reductase (DFR) activity that commits phenolics to PA synthesis was lower in YN01-429 seed coats. The results of Southern blot and in silico analyses were indicative of two copies of the DFR gene in B. napus. Both copies were functional in YN01-429, ruling out homeoallelic repression or silencing, but together they showed very low expression levels (17-fold fewer transcripts) relative to DFR activity in N89-53 seed coats. These results collectively suggest that YN01-429 differs in regulatory circuits that impact the PA synthesis branch much more than the flavonol synthesis branch in the seed coats and such circuits do not impinge upon general phenylpropanoid metabolism in the embryos.


1990 ◽  
Vol 70 (3) ◽  
pp. 857-859 ◽  
Author(s):  
W. D. BEVERSDORF ◽  
D. J. HUME ◽  
P. GOSTOVIC ◽  
G. CHU ◽  
W. MONTMINY ◽  
...  

OAC Triumph is a canola quality, summer-rape (Brassica napus L.) cultivar resistant to s-triazine herbicides and tolerant to as-triazinone herbicides. In 22 trials over 3 yr in Ontario it has averaged 2% higher in yield and had higher oil content, better lodging resistance and fewer green seeds at harvest than the s-triazine-resistant cultivar OAC Triton. In 12 trials over 3 yr in Western Canada, OAC Triumph exhibited similar advantages over OAC Triton.Key words: Rape (summer), s-triazine-resistant, cultivar description


2018 ◽  
Vol 14 (4) ◽  
pp. 366-374
Author(s):  
О. Л. Кляченко ◽  
Л. М. Присяжнюк ◽  
Н. В. Шофолова ◽  
О. В. Піскова

Euphytica ◽  
1986 ◽  
Vol 35 (3) ◽  
pp. 823-834 ◽  
Author(s):  
Marianne Lefort-Buson ◽  
Yvette Dattee

1992 ◽  
Vol 72 (4) ◽  
pp. 1239-1240 ◽  
Author(s):  
G. Rakow

AC Tristar summer rape (Brassica napus L.) is a triazine-tolerant, canola-quality cultivar. It is early to medium in maturity and high yielding. AC Tristar has high oil content, in comparison with other triazine-tolerant cultivars such as Tribute, but is highly susceptible to blackleg disease. AC Tristar is well adapted to the B. napus growing areas of western Canada.Key words: Rape (summer), triazine tolerance, cultivar description


1996 ◽  
Vol 76 (2) ◽  
pp. 341-342 ◽  
Author(s):  
P. B. E. McVetty ◽  
R. Scarth ◽  
S. R. Rimmer ◽  
C. G. J. van den Berg

Venus summer rape (Brassica napus L.) is a high-erucic acid rapeseed cultivar with canola-quality meal. Venus has an average 5% yield advantage over Hero rapeseed with seed oil and protein contents comparable to Hero. Venus is adapted to the southern B. napus growing regions of western Canada. Key words: Rape (summer), high erucic acid-low glucosinolate, cultivar description


Sign in / Sign up

Export Citation Format

Share Document