scholarly journals Metabolic and hormonal response to intermittent high-intensity and continuous moderate intensity exercise in individuals with type 1 diabetes: a randomised crossover study

Diabetologia ◽  
2016 ◽  
Vol 59 (4) ◽  
pp. 776-784 ◽  
Author(s):  
Lia Bally ◽  
Thomas Zueger ◽  
Tania Buehler ◽  
Ayse S. Dokumaci ◽  
Christian Speck ◽  
...  
2007 ◽  
Vol 292 (3) ◽  
pp. E865-E870 ◽  
Author(s):  
K. J. Guelfi ◽  
N. Ratnam ◽  
G. A. Smythe ◽  
T. W. Jones ◽  
P. A. Fournier

Previously, the decline in glycemia in individuals with type 1 diabetes has been shown to be less with intermittent high-intensity exercise (IHE) compared with continuous moderate-intensity exercise (MOD) despite the performance of a greater amount of total work. The purpose of the present study was to determine whether this lesser decline in glycemia can be attributed to a greater increment in endogenous glucose production (Ra) or attenuated glucose utilization (Rd). Nine individuals with type 1 diabetes were tested on two separate occasions, during which either a 30-min MOD or IHE protocol was performed under conditions of a euglycemic clamp in combination with the infusion of [6,6-2H]glucose. MOD consisted of continuous cycling at 40% V̇o2 peak, whereas IHE involved a combination of continuous exercise at 40% V̇o2 peak interspersed with additional 4-s maximal sprint efforts performed every 2 min to simulate the activity patterns of intermittent sports. During IHE, glucose Ra increased earlier and to a greater extent compared with MOD. Similarly, glucose Rd increased sooner during IHE, but the increase by the end of exercise was comparable with that elicited by MOD. During early recovery from IHE, Rd rapidly declined, whereas it remained elevated after MOD, a finding consistent with a lower glucose infusion rate during early recovery from IHE compared with MOD ( P < 0.05). The results suggest that the lesser decline in glycemia with IHE may be attributed to a greater increment in Ra during exercise and attenuated Rd during exercise and early recovery.


2015 ◽  
Vol 32 (3) ◽  
pp. 99-102 ◽  
Author(s):  
Jacqui Charlton ◽  
Lynn Kilbride ◽  
Rory MacLean ◽  
Mark G Darlison ◽  
John McKnight

2020 ◽  
Vol 11 ◽  
pp. 204201882092532 ◽  
Author(s):  
Aleksandra Żebrowska ◽  
Marcin Sikora ◽  
Anna Konarska ◽  
Anna Zwierzchowska ◽  
Tomasz Kamiński ◽  
...  

Aim: This study aimed to determine the effect of moderate intensity continuous exercise (Ex) and hypoxia (Hyp) on serum brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3), irisin and cytokines levels in patients with type 1 diabetes (T1D). Methods: A total of 14 individuals with T1D (age: 28.7 ± 7.3 years) and 14 healthy adults (age: 27.1 ± 3.9 years) performed 40-min continuous Ex at moderate intensity (50% lactate threshold) on a cycle ergometer in normoxia (Nor) and Hyp (FiO2 = 15.1%) Biochemical factors, glucose concentrations and physiological variables were measured at rest, immediately and up to 24 h after both Ex protocols. Results: Patients with T1D had significantly lower pre-Ex serum concentrations of BDNF ( p < 0.05, p < 0.01), and total IGF-1 ( p < 0.001, p < 0.05) and significantly higher irisin levels ( p < 0.05, p < 0.01) in Nor and Hyp, compared with healthy subjects. Ex significantly increased in T1D group serum BDNF (in Nor only p < 0.05) and total IGF-1 levels in Nor and Hyp ( p < 0.001 and p < 0.01, respectively). Immediately after Ex in Hyp, freeIGF-1 ( p < 0.05) and irisin levels ( p < 0.001) were significantly higher compared with the levels induced by Ex alone. Free IGF-1 and irisin serum levels remained elevated in 24 h post-Ex in Hyp. In T1D, significant blood glucose (BG) decrease was observed immediately after Ex in Hyp ( p < 0.001) and in 24 h recovery ( p < 0.001) compared with pre-Ex level. Conclusion: The study results suggest that moderate intensity continuous Ex has beneficial effect on BDNF and IGF-1 levels. Ex in hypoxic conditions may be more effective in increasing availability of IGF-1. The alterations in the post-Ex irisin levels and IGF-1 system may be contributing to more effective glycaemia control in patients with T1D.


2020 ◽  
Vol 106 (1) ◽  
pp. e83-e93
Author(s):  
Vinutha B Shetty ◽  
Paul A Fournier ◽  
Nirubasini Paramalingam ◽  
Wayne Soon ◽  
Heather C Roby ◽  
...  

Abstract Context Under basal insulin levels, there is an inverted U relationship between exercise intensity and exogenous glucose requirements to maintain stable blood glucose levels in type 1 diabetes (T1D), with no glucose required for intense exercise (80% V̇O2 peak), implying that high-intensity exercise is not conducive to hypoglycemia. Objective This work aimed to test the hypothesis that a similar inverted U relationship exists under hyperinsulinemic conditions, with high-intensity aerobic exercise not being conducive to hypoglycemia. Methods Nine young adults with T1D (mean ± SD age, 22.6 ± 4.7 years; glycated hemoglobin, 61 ± 14 mmol/mol; body mass index, 24.0 ± 3.3 kg/m2, V̇O2 peak, 36.6 ± 8.0 mL·kg–1 min–1) underwent a hyperinsulinemic-euglycemic clamp to maintain stable glycemia (5-6 mmol·L−1), and exercised for 40 minutes at 4 intensities (35%, 50%, 65%, and 80% V̇O2peak) on separate days following a randomized counterbalanced study design. Main Outcome Measures Glucose infusion rates (GIR) and glucoregulatory hormones levels were measured. Results The GIR (± SEM) to maintain euglycemia was 4.4 ± 0.4 mg·kg–1 min–1 prior to exercise, and increased significantly by 1.8 ± 0.4, 3.0 ± 0.4, 4.2 ± 0.7, and 3.5 ± 0.7 mg·kg–1 min–1 during exercise at 35%, 50%, 65%, and 80% V̇O2 peak, respectively, with no significant differences between the 2 highest exercise intensities (P &gt; .05), despite differences in catecholamine levels (P &lt; .05). During the 2-hour period after exercise at 65% and 80% V̇O2 peak, GIRs did not differ from those during exercise (P &gt; .05). Conclusions Under hyperinsulinemic conditions, the exogenous glucose requirements to maintain stable glycemia during and after exercise increase with exercise intensity then plateau with exercise performed at above moderate intensity ( &gt; 65% V̇O2 peak). High-intensity exercise confers no protection against hypoglycemia.


2012 ◽  
Vol 97 (11) ◽  
pp. 4193-4200 ◽  
Author(s):  
A. J. Fahey ◽  
N. Paramalingam ◽  
R. J. Davey ◽  
E. A. Davis ◽  
T. W. Jones ◽  
...  

Context: Recently we showed that a 10-sec maximal sprint effort performed before or after moderate intensity exercise can prevent early hypoglycemia during recovery in individuals with type 1 diabetes mellitus (T1DM). However, the mechanisms underlying this protective effect of sprinting are still unknown. Objective: The objective of the study was to test the hypothesis that short duration sprinting increases blood glucose levels via a disproportionate increase in glucose rate of appearance (Ra) relative to glucose rate of disappearance (Rd). Subjects and Experimental Design: Eight T1DM participants were subjected to a euglycemic-euinsulinemic clamp and, together with nondiabetic participants, were infused with [6,6-2H]glucose before sprinting for 10 sec and allowed to recover for 2 h. Results: In response to sprinting, blood glucose levels increased by 1.2 ± 0.2 mmol/liter (P &lt; 0.05) within 30 min of recovery in T1DM participants and remained stable afterward, whereas glycemia rose by only 0.40 ± 0.05 mmol/liter in the nondiabetic group. During recovery, glucose Ra did not change in both groups (P &gt; 0.05), but glucose Rd in the nondiabetic and diabetic participants fell rapidly after exercise before returning within 30 min to preexercise levels. After sprinting, the levels of plasma epinephrine, norepinephrine, and GH rose transiently in both experimental groups (P &lt; 0.05). Conclusion: A sprint as short as 10 sec can increase plasma glucose levels in nondiabetic and T1DM individuals, with this rise resulting from a transient decline in glucose Rd rather than from a disproportionate rise in glucose Ra relative to glucose Rd as reported with intense aerobic exercise.


2021 ◽  
Author(s):  
Barbora Paldus ◽  
Dale Morrison ◽  
Dessi P. Zaharieva ◽  
Melissa H. Lee ◽  
Hannah Jones ◽  
...  

<b>Objective</b>: To compare glucose control with hybrid closed loop (HCL) when challenged by moderate-intensity exercise (MIE), high-intensity intermittent exercise (HIE) and resistance exercise (RE) while profiling counter-regulatory hormones, lactate, ketones, and kinetic data in adults with type 1 diabetes. <p><b>Methods</b>: <a>Open-label multisite randomized crossover trial. </a><a>Adults with type 1 diabetes undertook 40 min of HIE, MIE, and RE in random order while using HCL (Medtronic 670G) with a temporary target set 2 hours prior to and during exercise and 15g carbohydrates if pre-exercise glucose was <126mg/dL, to prevent hypoglycemia.</a> Primary outcome was median (IQR) continuous glucose monitoring (CGM) time-in-range (TIR, 70-180 mg/dL) for 14 hours post-exercise commencement. Accelerometer data and venous glucose, ketones, lactate, and counter-regulatory hormones were measured for 280 min post-exercise commencement. </p> <p><b>Results</b>: Median TIR was 81% [67, 93]%, 91% [80, 94]%, and 80% [73, 89]% for 0-14 hours post-exercise commencement for HIE, MIE and RE, respectively (n=30), with no difference between exercise types (MIE v HIE; p=0.11, MIE v RE p=0.11, HIE v RE p=0.90). Time-below-range was 0% for all exercise bouts. For HIE and RE compared with MIE, there were greater increases respectively in noradrenaline (p=0.01, p=0.004), cortisol (p<0.001, p=0.001), lactate (p£0.001, p£0.001) and heart rate (p=0.007, p=0.015). During HIE compared with MIE, there were greater increases in growth hormone (p=0.024). </p> <p><b>Conclusions</b>: Under controlled conditions, HCL provided satisfactory glucose control with no difference between exercise type. Lactate, counter-regulatory hormones, and kinetic data differentiate type and intensity of exercise, and their measurement may help inform insulin needs during exercise. However, their potential utility as modulators of insulin dosing will be limited by the pharmacokinetics of subcutaneous insulin delivery. </p>


Sign in / Sign up

Export Citation Format

Share Document