Non-, Mono-, and Di- o -Chlorobiphenyl Concentrations and Their Toxic Equivalents to 2,3,7,8-Tetrachlorodibenzo[ p ]dioxin in Aroclors® and Digestive Glands from American Lobster ( Homarus americanus ) Captured in Atlantic Canada

1996 ◽  
Vol 57 (3) ◽  
pp. 465-472 ◽  
Author(s):  
T. L. King ◽  
B. K. Haines ◽  
J. F. Uthe
2021 ◽  
Author(s):  
Benjamin de Jourdan ◽  
Tahereh Boloori ◽  
Les Burridge

Abstract Standard model species are commonly used in toxicity tests due to their biological and technical advantages but studying native species increases the specificity and relevance of results generated for the potential risk assessment to an ecosystem. Accounting for intraspecies variability and other factors, such as chemical and physical characterization of test medium, is necessary to develop a reproducible bioassay for toxicity testing with native species. In this study, larval stage I American lobster (Homarus americanus) was selected as the test species, which is native to Atlantic Canada. Toxicity tests were first conducted exposing lobster larvae to a reference toxicant of copper sulfate (CuSO4) and then to physically and chemically dispersed oil. The effect on larval survival was estimated by calculating the median effect concentration (EC50) as 2.54-9.73 mg TPH/L when all trials are considered together. The HC5 or PNEC value was 2.52 mg TPH/L and therefore a narrow difference from the EC50 value. The inter-trial variability (coefficient of variability = 17%) was lower than the US Environmental Protection Agency standard test species of mysid shrimp (Americamysis bahia) and inland silversides (Menidia bervillina). Our results indicate that the described larval lobster bioassay is reliable to produce repeatable results for this commercially important and native species of Atlantic Canada.


2013 ◽  
Vol 37 (6) ◽  
pp. 577-581 ◽  
Author(s):  
R Smolowitz ◽  
R A Quinn ◽  
R J Cawthorn ◽  
R L Summerfield ◽  
A Y Chistoserdov

2013 ◽  
Vol 59 (6) ◽  
pp. 380-390 ◽  
Author(s):  
Robert A. Quinn ◽  
Richard J. Cawthorn ◽  
Rachael L. Summerfield ◽  
Roxanna Smolowitz ◽  
Andrei Y. Chistoserdov

Shell disease is a major threat to the American lobster (Homarus americanus, Milne Edwards) fishery. Here we describe the composition of microbial communities associated with lesions of 2 forms of shell disease in Atlantic Canada, (i) a trauma shell disease (TSD) characterized by massive lesions and (ii) an enzootic shell disease (EnSD) characterized by irregularly shaped lesions with a distinct orange to yellow color. The microbiology of the lesions was described by polymerase chain reaction and denaturing gradient gel electrophoresis of 16S rDNA amplified from scrapings of the shell lesions and was compared with communities of unaffected carapaces and previously described forms of shell diseases. Both TSD and EnSD lesions were dominated by members of Alphaproteobacteria, Gammaproteobacteria, and Flavobacteria, all commonly detected in other forms of shell disease; however, unique members of Epsilonproteobacteria were also present. Two Vibrio spp. and 2 Pseudoalteromonas spp. were dominant in lesions of TSD and a Tenacibaculum sp. and Tenacibaculum ovolyticum were dominant in lesions of EnSD. The TSD and EnSD in this study contained similar taxa as other shell disease forms; however, their microbiology is mostly different and neither resembles that of epizootic shell disease.


2016 ◽  
Vol 557 ◽  
pp. 177-187 ◽  
Author(s):  
MD McMahan ◽  
DF Cowan ◽  
Y Chen ◽  
GD Sherwood ◽  
JH Grabowski

2020 ◽  
Vol 641 ◽  
pp. 159-175
Author(s):  
J Runnebaum ◽  
KR Tanaka ◽  
L Guan ◽  
J Cao ◽  
L O’Brien ◽  
...  

Bycatch remains a global problem in managing sustainable fisheries. A critical aspect of management is understanding the timing and spatial extent of bycatch. Fisheries management often relies on observed bycatch data, which are not always available due to a lack of reporting or observer coverage. Alternatively, analyzing the overlap in suitable habitat for the target and non-target species can provide a spatial management tool to understand where bycatch interactions are likely to occur. Potential bycatch hotspots based on suitable habitat were predicted for cusk Brosme brosme incidentally caught in the Gulf of Maine American lobster Homarus americanus fishery. Data from multiple fisheries-independent surveys were combined in a delta-generalized linear mixed model to generate spatially explicit density estimates for use in an independent habitat suitability index. The habitat suitability indices for American lobster and cusk were then compared to predict potential bycatch hotspot locations. Suitable habitat for American lobster has increased between 1980 and 2013 while suitable habitat for cusk decreased throughout most of the Gulf of Maine, except for Georges Basin and the Great South Channel. The proportion of overlap in suitable habitat varied interannually but decreased slightly in the spring and remained relatively stable in the fall over the time series. As Gulf of Maine temperatures continue to increase, the interactions between American lobster and cusk are predicted to decline as cusk habitat continues to constrict. This framework can contribute to fisheries managers’ understanding of changes in habitat overlap as climate conditions continue to change and alter where bycatch interactions could occur.


2021 ◽  
Vol 210 ◽  
pp. 105664
Author(s):  
Inka Milewski ◽  
Ruth E. Smith ◽  
Heike K. Lotze

Sign in / Sign up

Export Citation Format

Share Document